Linear Algebra for Computer Science Homework 3

Read these first:

- i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under LATEX.
- ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a *single* PDF file.
- iii Up to 15% extra score will be given to solutions written under $L^{A}T_{E}X$, provided that you follow either of the following conventions:
 - (a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \mathbf{a}), and matrices with bold upper-case letters (A, using \mathbf{A}), or
 - (b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (a, A), and matrices with typewriter upper-case letters (A, using \mathtf{A}).
 - (c) You latex document must contain a *title*, a *date*, and your name as the author.
 - (d) In all cases, you must submit a *single* PDF file.
 - (e) If writing under LATEX, you must submit the *.tex* source (and other necessary source files if there are any) in addition to the PDF file.

Here is a short tutorial on LATEX: https://www.overleaf.com/ learn/latex/Learn_LaTeX_in_30_minutes

Questions

Linear Equations

To answer the following questions you need to use the fact that the set of solutions to a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ is in the form of $\{\mathbf{x}_p + \mathbf{x}_n \mid n \in \mathbb{N}\}$

 $\mathbf{x}_n \in \mathcal{N}(\mathbf{A})$, where \mathbf{x}_p is a particular solution.

- 1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a fat matrix (i.e. m < n) with full row rank and $\mathbf{b} \in \mathbb{R}^{m}$. Show that $\mathbf{A} \mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- 2. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a tall matrix (i.e. m > n) with full column rank and $\mathbf{b} \in \mathbb{R}^m$. Show that $\mathbf{A} \mathbf{x} = \mathbf{b}$ has either no solution or exactly one solution.
- 3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be rank-deficient (rank(\mathbf{A}) < min(m, n)) and $\mathbf{b} \in \mathbb{R}^m$. Show $\mathbf{A} \mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions.
- 4. Consider the system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, and let S be the set of solutions to it. Show that
 - (a) S is a linear subspace if and only if $\mathbf{b} = \mathbf{0}$.
 - (b) If S is nonempty, then there exists a vector $\mathbf{y} \in \mathbb{R}^n$ such that the set $\{\mathbf{z} \mathbf{y} \mid \mathbf{z} \in S\}$ is a linear subspace.

Matrix Rank

- 5. Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that $\mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{A} \mathbf{A}^T)$. Hint: You may use the fact that any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r can be decomposed as $\mathbf{A} = \mathbf{C} \mathbf{R}$, where $\mathbf{C} \in \mathbb{R}^{m \times r}$ and $\mathbf{R} \in \mathbb{R}^{r \times n}$ are of full column rank and full row rank, respectively.
- 6. From the previous question conclude that $\operatorname{rank}(A) = \operatorname{rank}(AA^T) = \operatorname{rank}(A^TA)$.

Null space

7. Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r. We perform the low-rank decomposition $\mathbf{A} = \mathbf{C}\mathbf{R}$, where $\mathbf{C} \in \mathbb{R}^{m \times r}$ is of full column rank, and $\mathbf{R} \in \mathbb{R}^{r \times n}$ are of full row rank. Show that the null space of \mathbf{A} is the same as the null space of \mathbf{R} .