Linear Algebra for Computer Science Homework 3

Read these first:

i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a single PDF file.
iii Up to 15% extra score will be given to solutions written under $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, provided that you follow either of the following conventions:
(a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \backslash mathbf $\{a\}$), and matrices with bold upper-case letters (A, using \mathbf\{A\}), or
(b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (\mathbf{a}, \mathbf{A}), and matrices with typewriter upper-case letters (A, using \mathtt\{A\}).
(c) You latex document must contain a title, a date, and your name as the author.
(d) In all cases, you must submit a single PDF file.
(e) If writing under $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, you must submit the .tex source (and other necessary source files if there are any) in addition to the PDF file.

Here is a short tutorial on $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$: https://www.overleaf.com/ learn/latex/Learn_LaTeX_in_30_minutes

Questions

Linear Equations

To answer the following questions you need to use the fact that the set of solutions to a system of linear equations $\mathrm{A} \mathbf{x}=\mathbf{b}$ is in the form of $\left\{\mathbf{x}_{p}+\mathbf{x}_{n} \mid\right.$

Linear Algebra for Computer Science and Engineering Fall 2023

Behrooz Nasihatkon
$\left.\mathbf{x}_{n} \in \mathcal{N}(\mathrm{~A})\right\}$, where \mathbf{x}_{p} is a particular solution.

1. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be a fat matrix (i.e. $m<n$) with full row rank and $\mathbf{b} \in \mathbb{R}^{m}$. Show that $\mathbf{A} \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
2. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be a tall matrix (i.e. $m>n$) with full column rank and $\mathbf{b} \in \mathbb{R}^{m}$. Show that $\mathbf{A x}=\mathbf{b}$ has either no solution or exactly one solution.
3. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be rank-deficient $(\operatorname{rank}(\mathrm{A})<\min (m, n))$ and $\mathbf{b} \in \mathbb{R}^{m}$. Show $\mathbf{A} \mathbf{x}=\mathbf{b}$ has either no solution or infinitely many solutions.
4. Consider the system of linear equations $\mathrm{A} \mathbf{x}=\mathbf{b}$ with $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, and let \mathcal{S} be the set of solutions to it. Show that
(a) \mathcal{S} is a linear subspace if and only if $\mathbf{b}=\mathbf{0}$.
(b) If \mathcal{S} is nonempty, then there exists a vector $\mathbf{y} \in \mathbb{R}^{n}$ such that the set $\{\mathbf{z}-\mathbf{y} \mid \mathbf{z} \in \mathcal{S}\}$ is a linear subspace.

Matrix Rank

5. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$. Show that $\mathcal{C}(\mathrm{A})=\mathcal{C}\left(\mathrm{AA}^{T}\right)$. Hint: You may use the fact that any matrix $A \in \mathbb{R}^{m \times n}$ of rank r can be decomposed as $\mathrm{A}=\mathrm{CR}$, where $\mathrm{C} \in \mathbb{R}^{m \times r}$ and $\mathrm{R} \in \mathbb{R}^{r \times n}$ are of full column rank and full row rank, respectively.
6. From the previous question conclude that $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}\left(A^{T} A\right)$.

Null space

7. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$ of rank r. We perform the low-rank decomposition $\mathrm{A}=\mathrm{CR}$, where $\mathrm{C} \in \mathbb{R}^{m \times r}$ is of full column rank, and $\mathrm{R} \in \mathbb{R}^{r \times n}$ are of full row rank. Show that the null space of A is the same as the null space of R.
