Linear Algebra for Computer Science Homework 4

Read these first:

i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a single PDF file.
iii Up to 15% extra score will be given to solutions written under $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, provided that you follow either of the following conventions:
(a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \backslash mathbf $\{a\}$), and matrices with bold upper-case letters (A, using \mathbf\{A\}), or
(b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (\mathbf{a}, \mathbf{A}), and matrices with typewriter upper-case letters (A, using \mathtt\{A\}).
(c) You latex document must contain a title, a date, and your name as the author.
(d) In all cases, you must submit a single PDF file.
(e) If writing under $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, you must submit the .tex source (and other necessary source files if there are any) in addition to the PDF file.

Here is a short tutorial on $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$: https://www.overleaf.com/ learn/latex/Learn_LaTeX_in_30_minutes

Questions

Projections

1. Consider a linear subspace \mathcal{S} and a vector $\mathbf{y} \in \mathcal{S}$. Using the projection formula, show that the projection of \mathbf{y} into \mathcal{S} is itself.
2. For a linear subspace $\mathcal{S} \subseteq \mathbb{R}^{n}$ its orthogonal complement is defined as $\mathcal{S}^{\perp}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid \mathbf{y}^{T} \mathbf{x}=0\right.$ for all $\left.\mathbf{x} \in \mathcal{S}\right\}$. In other words, \mathcal{S}^{\perp} comprises all the vectors that are perpendicular to all vectors in \mathcal{S}. Show that the orthogonal complement of a linear subspace is a linear subspace.
3. Prove that the null space of a matrix is the orthogonal complement of its row space.
4. Let $\mathrm{P} \in \mathbb{R}^{n \times n}$ be the projection matrix into a linear subspace \mathcal{S}. Show that I - P represents the projection into the orthogonal complement of \mathcal{S}. Hint: First show that I - P is a projection matrix.

Determinant

5. Prove that the determinant of an orthogonal matrix is either equal to 1 or -1 .
6. Show that the determinant of a projection matrix is either equal to 0 or 1. How do you explain this geometrically?

Eigenvalues and Eigenvectors

7. What is the relationship between the eigenvalues and eigenvectors of the square matrix A and those of $\mathrm{A}-\alpha \mathrm{I}$ where $\alpha \in \mathbb{R}$ and I is the identity matrix?
8. Prove that any eigenvalue of A is also an eigenvalue of A^{T}. (Hint: use the characteristic polynomial).
9. The square matrix A is called (left) stochastic (or a Markov matrix) if its elements are nonnegative and its columns add up to 1 (programmatically $\operatorname{sum}(\mathrm{A}, \operatorname{axis}=0)==\operatorname{ones}((1, \mathrm{n})))$. Prove that A has at least one unit eigenvalue $\lambda=1$. (Hint: First prove that A^{T} has a unit eigenvalue.)
10. Let \mathbf{v} be an eigenvector of A with a nonzero corresponding eigenvalue $\lambda \neq 0$. Prove that
(a) \mathbf{v} is in the column space of A .
(b) The (orthogonal) projection of \mathbf{v} into the row space of A is nonzero. (Hint: decompose the vector as $\mathbf{v}=\mathbf{v}_{r}+\mathbf{v}_{n}$ where \mathbf{v}_{r} and \mathbf{v}_{n} are in the row space and null space of A, respectively. Then show that \mathbf{v}_{r} is nonzero)
11. Let A be a symmetric real matrix with real eigenvalues $1,2, \ldots, n$, and corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$. Prove that if $\lambda_{i} \neq \lambda_{j}$ then $v_{i} \perp v_{j}$.

Linear Algebra for Computer Science and Engineering Fall 2023

Behrooz Nasihatkon

Positive Definite Matrices

For all question in this section, by positive definite we mean symmetric positive definite.
12. Prove that a symmetric matrix is positive definite if and only if all its eigenvalues are positive. (Remember from the class that the eigen-decomposition of a symmetric matrix is in the form of $\mathrm{A}=\mathrm{V} \Lambda \mathrm{V}^{-1}=\mathrm{V} \Lambda \mathrm{V}^{T}$.)
13. Show that the diagonal elements of a positive definite matrix are all positive.
14. Remember that an operation $\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ defined on a vector space \mathcal{V} is an inner product if
(a) $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ for all $\mathbf{u} \in \mathcal{V}$,
(b) $\langle\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$,
(c) $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{V}$,
(d) $\langle\alpha \mathbf{u}+\beta \mathbf{v}, \mathbf{w}\rangle=\alpha\langle\mathbf{u}, \mathbf{w}\rangle+\beta\langle\mathbf{v}, \mathbf{w}\rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and $\alpha, \beta \in \mathbb{R}$.

Let $\mathrm{A} \in \mathbb{R}^{n \times n}$ be any positive definite matrix. Show that the operation $\langle\cdot, \cdot\rangle_{\mathrm{A}}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\langle\mathbf{u}, \mathbf{v}\rangle_{\mathrm{A}}=\mathbf{u}^{T} \mathbf{A} \mathbf{v}
$$

is indeed an inner product.

Singular Value Decomposition

15. Let A be a nonsingular square matrix and $A={\mathrm{U} \Sigma \mathrm{V}^{T}}^{\text {b }}$ be its (full) SVD. Prove that $\operatorname{det}(\mathrm{U}) \operatorname{det}(\mathrm{V})=\operatorname{sign}(\operatorname{det}(\mathrm{A}))$, that is $\operatorname{det}(\mathrm{U}) \operatorname{det}(\mathrm{V})=1$ if $\operatorname{det}(\mathrm{A})>$ 0 and $\operatorname{det}(\mathrm{U}) \operatorname{det}(\mathrm{V})=1$ if $\operatorname{det}(\mathrm{A})<0$.
16. Show that for a symmetric positive definite matrix the eigenvalue decomposition $\mathrm{A}=\mathrm{V} \Lambda \mathrm{V}^{-1}=\mathrm{V} \Lambda \mathrm{V}^{T}$ is the same as its singular value decomposition.
17. Find a way to obtain the SVD of a symmetric matrix from its eigenvalue decomposition $A=V \Lambda V^{T}$. Notice that the diagonal elements of Λ might be negative.
18. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$ and two orthogonal matrices $\mathrm{P} \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$. Show that the singular values of PAQ is the same as the singular values of A .

Linear Algebra for Computer Science and Engineering Fall 2023
Behrooz Nasihatkon

Multivariate Calculus

19. Show that for a matrix $\mathrm{A} \in \mathbb{R}^{n \times n}$ the gradient of the expression $\mathbf{x}^{T} \mathbf{A x}$ is equal to $\left(A+A^{T}\right) \mathbf{x}$. What is the gradient when A is symmetric?
20. Show that for a symmetric matrix B the gradient of $1 /\left(\mathbf{x}^{T} \mathrm{Bx}\right)$ with respect to \mathbf{x} is $-2 \mathrm{Bx} /\left(\mathbf{x}^{T} \mathrm{Bx}\right)^{2}$ (if the gradient exists at \mathbf{x}).
21. Show that for symmetric matrices A and B the gradient of $f(\mathbf{x})=\left(\mathbf{x}^{T} \mathrm{Ax}\right) /\left(\mathbf{x}^{T} \mathrm{Bx}\right)$ with respect to x is equal to

$$
2\left(\mathrm{Ax}\left(\mathbf{x}^{T} \mathrm{~B} \mathbf{x}\right)-\mathrm{B} \mathbf{x}\left(\mathbf{x}^{T} \mathrm{~A} \mathbf{x}\right)\right) /\left(\mathbf{x}^{T} \mathrm{~B} \mathbf{x}\right) 2=2(\mathrm{~A} \mathbf{x}-f(\mathbf{x}) \mathrm{B} \mathbf{x}) /\left(\mathbf{x}^{T} \mathbf{B} \mathbf{x}\right)
$$

if the gradient exists at \mathbf{x}.
22. Let A be symmetric. Calculate the gradient of $\exp \left(-\mathbf{x}^{T} \mathrm{Ax}\right)$ with respect to \mathbf{x}.
23. Let A be (symmetric) positive definite. Compute the gradient of $\log (1+$ $\mathbf{x}^{T} \mathbf{A x}$) with respect to \mathbf{x}.
24. Consider the function $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x} /\|\mathbf{x}\|^{2}=\mathbf{x}^{T} \mathbf{A} \mathbf{x} /\left(\mathbf{x}^{T} \mathbf{x}\right)$ defined for a symmetric matrix A. Show that the critical points of f are exactly the eigenvectors of A . The critical points of a function f are points \mathbf{x} at which the gradient is zero or nonexistant.
25. Consider the function $f(\mathbf{x})=\mathbf{x}^{T} \mathrm{~A} \mathbf{x} /\left(\mathbf{x}^{T} \mathrm{~B} \mathbf{x}\right)$ defined for symmetric matrices A and B. Show that if B is invertible then the critical points of f are either the points for which $\mathbf{x}^{T} \mathrm{~B} \mathbf{x}=0$ or the eigenvectors of $\mathrm{B}^{-1} \mathrm{~A}$.

