
Linear Algebra for Computer Science - B. Nasihatkon
Fall 2023

Lab Instructions - session 5
Linear Equations

Solving linear equations
Look at the code below.
solve_eq.py

import numpy as np

import timeit

N = 100

A = np.random.randn(N,N)

x = np.random.randn(N)

b = A @ x

x1 = np.linalg.solve(A,b)

x2 = np.linalg.inv(A) @ b

print('error1=', np.linalg.norm(x-x1))

print('error2=', np.linalg.norm(x-x2))

print('elapsed1=', timeit.timeit(lambda : np.linalg.solve(A,b), number=100))

print('elapsed2=', timeit.timeit(lambda : np.linalg.inv(A) @ b, number=100))

● What does the above do? Explain. (the function np.linalg.norm gives the
length of a vector)

● Which method is more accurate? Using np.linalg.solve or using the
inverse?

● Which method is faster?
● Set N to a larger number and look at the results.
● Set the true x to a matrix x = np.random.randn(N,P) with P=100, so that

b becomes a matrix of the same size. Which method is faster? Choose a
larger P. What happens?

Task 1 - Purtub
In many real-world applications, we do not have access to the true vector of
measurements b = A x, but rather a perturbed version of it (noisy measurements).
To simulate this scenario, we introduce noise by generating random perturbations
and adding them to the calculated measurement vector:

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2023

noise = 0.001 * np.random.randn(N)

b = A @ x + noise

● solve the system of linear equations A x = b with the noisy version of b.
Observe how the perturbation affects the error.

● Double the size of the perturbation and see how the error changes. To have a
fair comparison you need to solve with b= A@x + 2*noise with the same
values of A, x, and noise (do not recreate them).

Task 2 - Singular case
Change the initial code (no noise added to b) such that A is singular. Here is one
way to do it.
A = np.random.randn(N,N)

A[:,N-1] = A[:,N-2]

● Why is A singular?
● What happens when you try to solve the equations?

Task 3 - Near-singular case
In many real-world scenarios, the matrix A may not be exactly singular, but rather
near-singular. This means that the matrix is very close to a singular matrix (A
singular matrix plus a small perturbation). Here we create such a scenario:
A = np.random.randn(N,N)

A[:,N-1] = A[:,N-2]

A += 0.00001 * np.random.randn(N,N)

● Compare the (order of) magnitude of the errors with the non-singular case.
What happens as we bring A closer to a singular matrix (make 0.00001
smaller)?

Task 4 - The effect of perturbation in near-singular case
Repeat task 2 but this time with a near-singular matrix A. How does a small
perturbation affect the error in a near-singular case?

Back to the Face Models
Remember the linear combination of faces from Lab 2 where you had to tune the
scalars a, b, and c to reconstruct TargetFace2 as a linear combination of Face1,
Face2, and Face3:

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2023

face1.py

import matplotlib.pyplot as plt

import numpy as np

from face_data import Face1, Face2, Face3, TargetFace2, edges

def plot_face(plt,X,edges,color='b'):

"plots a face"

plt.plot(X[:,0], X[:,1], 'o', color=color, markersize=3)

for i,j in edges:

xi = X[i,0]

yi = X[i,1]

xj = X[j,0]

yj = X[j,1]

draw a line between X[i] and X[j]

plt.plot((xi,xj), (yi,yj), '-', color=color)

plt.axis('square')

plt.xlim(-100,100)

plt.ylim(-100,100)

make a guess

a = 1/3.

b = 1/3.

c = 1/3.

Face = a * Face1 + b * Face2 + c * Face3

plot_face(plt, TargetFace2, edges, color='r')

plot_face(plt, Face, edges, color='g')

change a,b,c until the two plots align

plt.show()

In Lab 2 we found a, b, and c by trial and error. Now, we find them analytically.
To do this, first, vectorize the 68 by 2 face matrices to obtain 136-dimensional
vectors:
face1 = Face1.ravel()

face2 = Face2.ravel()

face3 = Face3.ravel()

t = TargetFace2.ravel();

Then, arrange the face vectors as the columns of a 136 by 3 matrix F:
F = np.stack((face1, face2, face3), axis=1)

Let x = [a,b,c]T. The relation F x = t gives a system of 136 equations and 3
unknowns. Solving for x gives the coefficients a, b, and c.

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2023

Task 5
Choose the first 3 equations from the above to get a system of 3 equations and 3
unknowns. Solve the equations to find a, b, and c.
task5.py

x = # solve the equations

a,b,c = x

Face = a * Face1 + b * Face2 + c * Face3

plot_face(plt, TargetFace2, edges, color='r')

plot_face(plt, Face, edges, color='g')

plt.show()

Task 6
Instead of choosing the first three equations from F x = t, choose three random
equations. You may use np.random.choice to select 3 indices without
replacement.
task6.py

for i in range(5):

inds = np.random.choice(range(136), 3, replace=False)

choose the equations

a,b,c = # solve the equations

Face = a * Face1 + b * Face2 + c * Face3

plot_face(plt, TargetFace2, edges, color='r')

plot_face(plt, Face, edges, color='g')

plt.show()

● Does choosing a different set of equations affect the result?

Task 7 - Noisy measurements
Add a little Gaussian noise to the target face.

TargetFace2 += 3 * np.random.randn(*TargetFace2.shape)

Now, repeat Task 6. What happens?
● Do we get a face close to TargetFace2 in most iterations?
● Does the quality of the result depend on the choice of the 3 equations?
● Why do you think this happens?
● (Optional) Can you think of a better way to find the coefficients a,b,c?

K. N. Toosi University of Technology

