
Linear Algebra for Computer Science - B. Nasihatkon
Fall 2021

Lab Instructions - session 6
Least Squares

Least Squares
Look at the following code.
least_squares.py
import numpy as np

x_true = np.array([3, 1.5,-1.0, 2.4, -3, -.1, 2.2, 4.1, -3.2, 1.0])

n = x_true.size # no. of unknowns

m = 20 # no of equations (measurements)

A = np.random.randn(m,n)

create the measurments

y_true = A @ x_true

add noise to the measurments

sigma = 0.01

measurement_noise = sigma * np.random.randn(m)

y_noisy = y_true + measurement_noise

we have access to the matrix "A" and noisy measurements "y_noisy".

Frome these, we intend to estimate "x_true" using least squares

x_est = np.linalg.inv(A.T@A) @ A.T @ y_noisy

x_est = np.linalg.solve(A.T@A, A.T @ y_noisy)

x_est = np.linalg.lstsq(A,y_noisy)[0]

measure the distance between the estimated unkowns "x_est"

and the ture ones "x_true"

print('error=', np.linalg.norm(x_est - x_true))

● Explain the code.
● Use the alternative method np.linalg.solve(A.T@A, A.T @ y_noisy)

and check if you get a similar x_est. Why this is equivalent to the least
squares solution np.linalg.inv(A.T@A) @ A.T @ y_noisy?

● You can also use the numpy function np.linalg.lstsq to do least squares.
Verify that it gives the same result.

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2021

Task 1
Put the above in a loop to repeat it 100 times and report the average error.
Afterward, keep increasing m, the number of equations (measurements). How does
increasing the number of equations affect the average error? How do you explain
this?

Back to the Face Models
From the previous lab, remember trying to find the a, b, and c to reconstruct
TargetFace2 as a linear combination of Face1, Face2, and Face3. To do that, we
first created an overdetermined system of 136 equations in 3 unknowns F x = t,
where F and t were obtained by
face1 = Face1.ravel()

face2 = Face2.ravel()

face3 = Face3.ravel()

t = TargetFace.ravel();

F = np.stack((face1, face2, face3), axis=1)

In the previous Lab session, we chose 3 out of 136 equations, randomly or
otherwise, to find x = [a,b,c]T as the solution to a system of 3 equations and 3
unknowns. You observed that this approach failed when the target face was noisy.

NoisyTargetFace = TargetFace + 3 * np.random.randn(*TargetFace2.shape)

Here, we intend to use all the 136 equations to solve for x = [a,b,c]T.

Task 2
Use the least squares solution to solve F x = t for a noisy target t. Use the formula
you learned in class. Compare the solution against randomly selecting 3 points.

task2.py

import matplotlib.pyplot as plt

import numpy as np

from face_data import Face1, Face2, Face3, TargetFace2, edges

def plot_face(plt,X,edges,color='b'):

"plots a face"

plt.plot(X[:,0], X[:,1], 'o', color=color, markersize=3)

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2021

for i,j in edges:

xi = X[i,0]

yi = X[i,1]

xj = X[j,0]

yj = X[j,1]

draw a line between X[i] and X[j]

plt.plot((xi,xj), (yi,yj), '-', color=color)

plt.axis('square')

plt.xlim(-100,100)

plt.ylim(-100,100)

TargetFace = TargetFace2

NoisyTargetFace = TargetFace + 3 * np.random.randn(*TargetFace.shape)

face1 = Face1.ravel()

face2 = Face2.ravel()

face3 = Face3.ravel()

t = NoisyTargetFace.ravel();

F = np.stack((face1, face2, face3), axis=1)

for i in range(5):

inds = np.random.choice(range(136), 3, replace=False)

a1,b1,c1 = # solve 3 random equations

a2,b2,c2 = # least squares solution

Face_rnd = a1 * Face1 + b1 * Face2 + c1 * Face3

Face_lsq = a2 * Face1 + b2 * Face2 + c2 * Face3

plot_face(plt, NoisyTargetFace, edges, color='k')

plot_face(plt, Face_rnd, edges, color='g')

plot_face(plt, Face_lsq, edges, color='b')

plt.show()

● What do you conclude by comparing Face_rnd with Face_lsq?
● Plot Face_lsq against TargetFace instead of NoisyTargetFace. What

do you observe?
● Which one do you think is closer to TargetFace? Face_lsq or

NoisyTargetFace? Notice that we constructed Face_lsq from the noisy
target NoisyTargetFace. Why do you think this happens?

● Confirm the above numerically, by computing the sum of squared differences
between the elements of paris of matrices.

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2021

● Use numpy.linalg.lstsq to solve the least squares problem.

K. N. Toosi University of Technology

