Linear Algebra for Computer Science

 Lecture 18Gram-Schmidt Orthogonalization, QR decompostion

Orthogonal subspaces
$S_{1}, S_{2} \subseteq V$ are linear subspaces of V.
S_{1}, S_{2} are orthogonal if for all $V_{1} \in S_{1}$,$v_{2} \in S_{2} \quad v_{1}+v_{2}$

Four Basic Subspaces

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, C(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\} \begin{array}{c}
\text { column } \\
\text { space }
\end{array} \\
& \operatorname{rank}(A)=r \quad R(A)=C\left(A^{\top}\right)=\left\{\begin{array}{ll}
A^{\top} x & \left.\mid x \in \mathbb{R}^{m}\right\} \\
\left(x^{\top} A\right)^{\top}
\end{array} \quad \begin{array}{l}
\text { row } \\
\text { space }
\end{array}\right. \\
& \left(x^{\top} A\right)^{\top} \\
& N(A)=\left\{x \in R^{n} \mid A x=0\right\} \begin{array}{l}
\text { null } \\
\text { spue }
\end{array} \\
& x^{\top} A=0^{\top} \quad \text { left null } \underset{\text { space }}{ } N\left(A^{\top}\right)=\left\{x \in \mathbb{R}^{m} \left\lvert\, \begin{array}{l}
x^{\top} A=0^{\top} \\
A^{\top} x=0
\end{array}\right.\right\}
\end{aligned}
$$

Four Basic Subspaces

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, C(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\} \begin{array}{c}
\text { column } \\
\text { space }
\end{array} \\
& \operatorname{rank}(A)=r \quad R(A)=C\left(A^{\top}\right)=\left\{\begin{array}{ll}
A^{\top} x & \left.\mid x \in \mathbb{R}^{m}\right\} \\
\left(x^{\top} A\right)^{\top}
\end{array} \quad \begin{array}{l}
\text { row } \\
\text { space }
\end{array}\right. \\
& \left(x^{\top} A\right)^{\top} \\
& N(A)=\left\{x \in R^{n} \mid A x=0\right\} \begin{array}{l}
\text { null } \\
\text { spue }
\end{array} \\
& x^{\top} A=0^{\top} \quad \text { left null } \underset{\text { space }}{ } N\left(A^{\top}\right)=\left\{x \in \mathbb{R}^{m} \left\lvert\, \begin{array}{l}
x^{\top} A=0^{\top} \\
A^{\top} x=0
\end{array}\right.\right\}
\end{aligned}
$$

Four Basic Subspaces - Example

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & -1 \\
2 & 1 \\
0 & 1
\end{array}\right] \\
& N\left(A^{\top}\right)=\left\{x \in \mathbb{R}^{* 3} \mid A^{\top} x=0\right\} \\
& \text { N } \\
& {\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0} \\
& A_{x \in N\left(A^{\top}\right)}\left\{\begin{array}{l}
x \perp(1,2,0)^{\top} \\
x \perp(-1,1,1)^{\top}
\end{array}\right\} \Rightarrow x \perp C(A)
\end{aligned}
$$

Four Basic Subspaces

$$
\begin{aligned}
& C(A) \perp N\left(A^{\top}\right) \\
& R(A) \perp N(A) \quad\left\{\begin{array}{l}
{\left[\begin{array}{l}
\int_{1}
\end{array} \begin{array}{l}
\operatorname{dim}(R(A))=R \\
\operatorname{dim}(C(A))=r \\
\operatorname{dim}(N(A))=n-r
\end{array}\right.} \\
\operatorname{dim}\left(N\left(A^{\top}\right)\right)=m-r
\end{array}\right. \\
& R(A), N(A) \subseteq \mathbb{R}^{n} \begin{array}{r}
\operatorname{man} k(A)=r \\
\operatorname{dim}(R(A))+\operatorname{dim}(N(A))=n \\
\mid P^{n}=R(A) \oplus N(A)
\end{array} \\
& C(A), N\left(A^{\top}\right) \subseteq \mathbb{R}^{m} \quad \operatorname{dim}(C(A))+\operatorname{dim}\left(N\left(A^{\top}\right)\right)=m
\end{aligned}
$$

Four Basic Subspaces

$$
\begin{aligned}
& C(A) \perp N\left(A^{\top}\right) \\
& R(A) \perp N(A) \quad\left\{\begin{array}{l}
{\left[\begin{array}{l}
\int_{1}
\end{array} \begin{array}{l}
\operatorname{dim}(R(A))=R \\
\operatorname{dim}(C(A))=r \\
\operatorname{dim}(N(A))=n-r
\end{array}\right.} \\
\operatorname{dim}\left(N\left(A^{\top}\right)\right)=m-r
\end{array}\right. \\
& R(A), N(A) \subseteq \mathbb{R}^{n} \begin{array}{r}
\operatorname{man} k(A)=r \\
\operatorname{dim}(R(A))+\operatorname{dim}(N(A))=n \\
\mid P^{n}=R(A) \oplus N(A)
\end{array} \\
& C(A), N\left(A^{\top}\right) \subseteq \mathbb{R}^{m} \quad \operatorname{dim}(C(A))+\operatorname{dim}\left(N\left(A^{\top}\right)\right)=m
\end{aligned}
$$

Four Basic Subspaces

$$
\begin{array}{ll}
c \in C\left(A^{\top}\right)=R(A) \quad c=A^{\top} x \quad c^{\top}=x^{\top} A \\
n \in N(A) \\
c^{\top} n=\left(x^{\top} A\right) n & =x^{\top}(A n)=x^{\top} \overrightarrow{0}=0 \\
0 & \Rightarrow R(A) \perp N(A)
\end{array}
$$

the residual vector

$$
\begin{array}{cc}
A & A x=b \\
p=A x & A x+e=b \\
x=\left(A^{\top} A\right)^{-1} A^{\top} b & A x=b-e \\
P=A\left(A^{\top} A\right)^{-1} A^{\top} b=P p & e=b-A x
\end{array}
$$

residual projection

$$
\begin{aligned}
& e=b-A x=b-P=b-A\left(A^{\top} A\right)^{-1} A^{\top} b \\
&=\underbrace{\left(I-A\left(A^{\top} A\right)^{-1} A^{\top}\right)}_{P_{N} ?} b=(I-P)_{b} \\
& P_{N}^{\top}=P_{N} \\
& P_{N} P_{N}=(I-P)(I-P)=I-P-P+P P=I-P-P+P=I-P=P_{N}
\end{aligned}
$$

P_{N} is a projection into some space

$$
\begin{aligned}
P_{N} \text { is a projection } \\
P_{N} P=(I-P) P=P-P P=P-P=0 \quad P_{N}(P x)=0 \\
x \in C(A) \Rightarrow \quad x=A y \Rightarrow P_{N} x=\left(I-A\left(A^{\top} A\right)^{-1} A^{\top}\right) A y=A y-A y \equiv 0
\end{aligned}
$$

residual projection
P_{A} : Projection into $C(A)$
$P_{N}=I-P_{A}$ projection into $N\left(A^{\top}\right)$

$$
x=P_{A} x+P_{N} x \quad\left(P_{A}+P_{M}=I\right)
$$

left hall space of A

Ps: P_{S} projection into liner subspace S
$P_{N}:$ is projection into the orthogonneal complement of S

Orthogonal Complement

$$
S^{\perp}=\{x \mid x \perp y \text { for all } y \in S\}
$$

Projection matrix with Orthonormal Columns
Assume A has orthonormal columns

$$
\begin{aligned}
& A=\left[a _ { a } \left(a_{2}-\left[\begin{array}{l}
a_{n}
\end{array}\right] \quad\left\{\begin{array}{lll}
a_{1}^{\top} a_{i}=1 \\
a_{i}^{\top} a_{j}=0 & 1 \neq j & A^{\top} A=I \\
P & =A\left(A^{\top} A\right)^{-1} A^{\top}=A A^{\top} \\
A x=b(-C) & x=\left(A^{\top} A\right)^{-1} A^{\top} b=A^{\top} b \\
a_{1}^{\top} \\
x_{2} \\
x_{n}
\end{array}\right]=\begin{array}{ll}
a_{1}^{\top} \\
x_{n} & x_{i}=\left\langle a_{i}, b\right\rangle
\end{array}\right.\right.
\end{aligned}
$$

Orthogonalization

find Q such that $\left\{\begin{array}{l}C(Q)=C(A) \\ Q^{\top} Q=I \quad 2 \text { has orthonormal } \\ \text { columns }\end{array}\right.$

$$
A \xrightarrow{\text { orthogonalization }} 2 \begin{gathered}
\text { finn an orthonormal } \\
\text { basis } q_{1}, \ldots, q_{n} \\
\operatorname{span}\left(q_{1}-q_{n}\right)=\operatorname{span}\left(a_{1}-z_{n}\right)
\end{gathered}
$$

Orthogonalization

$$
\operatorname{span}\left(q_{1}-q_{n}\right)=\operatorname{span}\left(a_{1}-q_{1}\right)
$$

$$
\longrightarrow_{q_{1}}=\frac{a_{1}}{\left\|a_{1}\right\|}
$$

$$
\begin{aligned}
& u_{1}=a_{1} \quad q_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{a_{1}}{\left\|a_{1}\right\|} \\
& u_{2}=a_{2}-\frac{a_{1} a_{1}^{\top}}{a_{1}^{\top} a_{1}} a_{2}=a_{2}-\frac{a_{1} a_{1}^{\top}}{\| \|_{1} \|^{2}} a_{2}=a_{2}-\left(\frac{a_{1}}{\left\|a_{1}\right\|}\right)\left(\frac{a_{1}}{\left\|q_{1}\right\|}\right)^{\top} a_{2} \\
& q_{2}=\frac{u_{2}}{\left\|u_{2}\right\|} \quad \begin{array}{l}
u_{2}=a_{2}-q_{1} q_{1}^{\top} a_{2}=a_{2}-q_{1}\left(q_{1}^{\top} a_{2}\right) \\
q_{2} \uparrow \\
q_{1} \Rightarrow \frac{\left\|u_{2}\right\| q_{2}}{u_{2}}+\left(q^{\top} a_{2}\right) q_{1}=a_{2}
\end{array}
\end{aligned}
$$

Orthogonalization

$$
\begin{aligned}
& a_{1}=\left\|u_{1}\right\| q_{1}=\alpha r_{1} \\
& a_{2}= \\
& {\left[a_{2} \| q_{2}+\left(q_{1}^{+} a_{2}\right) q_{1}=\beta q_{1}+\gamma q_{2}\right.} \\
& =\left[q_{1}\right)\left[q_{2}\left[\begin{array}{ll}
\alpha & \beta \\
0 & \gamma
\end{array}\right]\right.
\end{aligned}
$$

Orthogonalization

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \\
& \rightarrow \underset{a_{3}}{a_{3}} \overbrace{a_{1}}^{a_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& u_{3}=a_{3}-P_{\operatorname{san}\left(a_{1}, a_{2}\right)=\operatorname{span}\left(a_{1}, a_{2}\right)} a_{3} \\
& u_{3}^{\prime}=a_{3}-P_{\left[a_{1} a_{2}\right]} a_{3}=a_{3}-1 \sum_{\left[q_{1} q_{2}\right]} a \\
& u_{3}=a_{3}-\left[q_{1} \cdot q_{2}\right]\left[\begin{array}{c}
q_{1}^{\top} \\
q_{2}^{\top}
\end{array}\right] a_{3} \\
& u_{3}=a_{3}-q_{1} q_{1}^{\top} a_{3}-q_{2} q_{2}^{\top} a_{3} \\
& q_{3}=\frac{u_{3}}{\left\|u_{3}\right\|} \\
& -\gamma q_{3}=u_{3}=a_{3}-q_{1} \alpha-q_{2} \beta \\
& a_{3}=\alpha q_{1}+\beta q_{2}+\gamma q_{3}
\end{aligned}
$$

Orthogonalization

$$
\begin{aligned}
& u_{3}=a_{3}-q_{1} q_{1}^{\top} a_{3}-q_{2} q_{2}^{\top} a_{3} \\
& \begin{aligned}
q_{3}=\frac{u_{3}}{\left\|u_{3}\right\|} \quad-\gamma q_{3}=u_{3} & =a_{3}-q_{1} \alpha-q_{2} \beta \\
a_{3} & =\alpha q_{1}+\beta q_{2}+\gamma q_{3}
\end{aligned} \\
& a_{3}=\alpha q_{1}+\beta q_{2}+\gamma q_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q-R decomposition }
\end{aligned}
$$

Orthogonalization

QR decomposition

$$
[A]=Q R
$$

$$
\begin{aligned}
& \quad \rightarrow \text { upper triangular } \\
& \partial^{\top} 2=I \quad(2 \text { has orthonormal columns) })
\end{aligned}
$$

$$
m=n
$$

$$
\begin{aligned}
& A=\underset{n \times n}{A} R \longrightarrow \text { upper-triangular } \\
& Q_{n \times n} Q=Q Q^{\top}=I
\end{aligned}
$$

Q-R decomposition

$$
(Q R Q, Q L, L Q)
$$

Orthogonalization
$a_{1}, \alpha_{2}, \ldots, a_{n}$ idependent

$$
\begin{aligned}
& q_{1}=\frac{a_{1}}{\left\|a_{1}\right\|} \\
& \text { for } i=2 \ldots n \\
& u_{i}=a_{i}-q_{1} q_{1}^{\top} a_{i}-q_{2} q_{2}^{\top} a_{i}-\cdots-q_{i-1} q_{i-1}^{\top} a_{i} \\
& q_{i}=\frac{u_{i}}{\left\|u_{i}\right\|}
\end{aligned}
$$

Garam-Schmidt orthogonalization

Orthogonalization

$$
\begin{aligned}
& \therefore A: \text { full column-rank } \Rightarrow A=Q R \\
& \text { AEAR square \&o non-singular }
\end{aligned}
$$

