Linear Algebra for Computer Science

Lecture 20

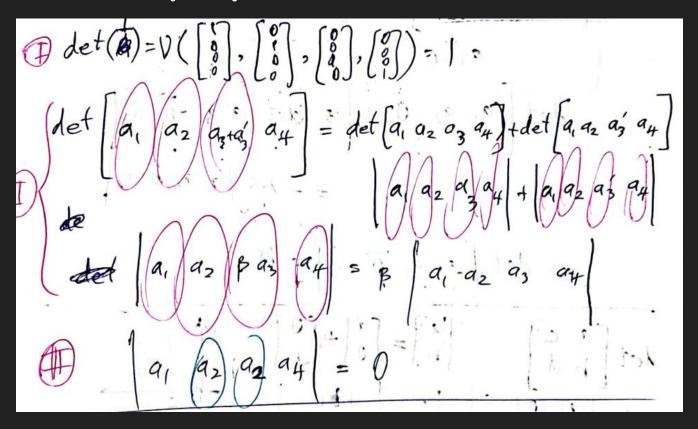
Determinant

Determinant

+(x)=+x e(R^{2x2} A-1 (a_1, a_2) 9 $a_3 a_3 = R^{3 \times 3}$ A = 91 det (aA)=V(a, a2, a3)

Toosi

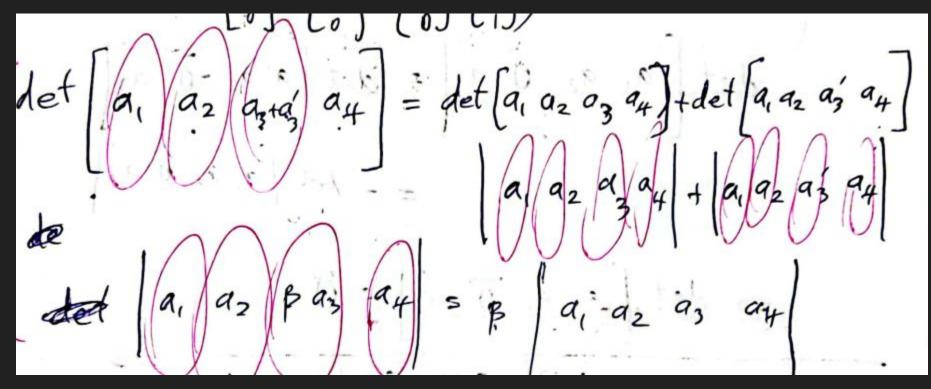
Three basic properties



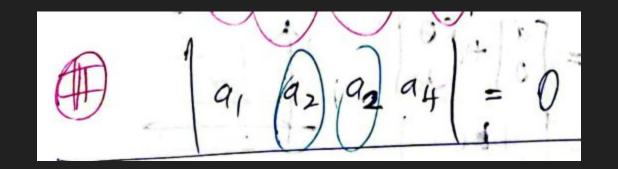
K. N. Toos niversity of Technology

1. Determinant of Identity Matrix

2. Multilinear (Linear in each column)



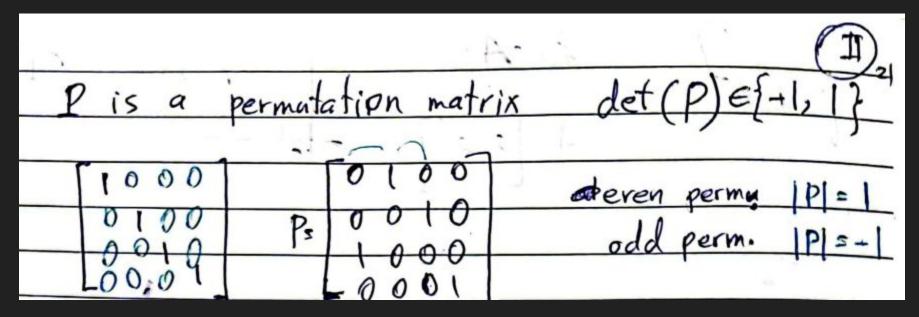
3. Identical Columns



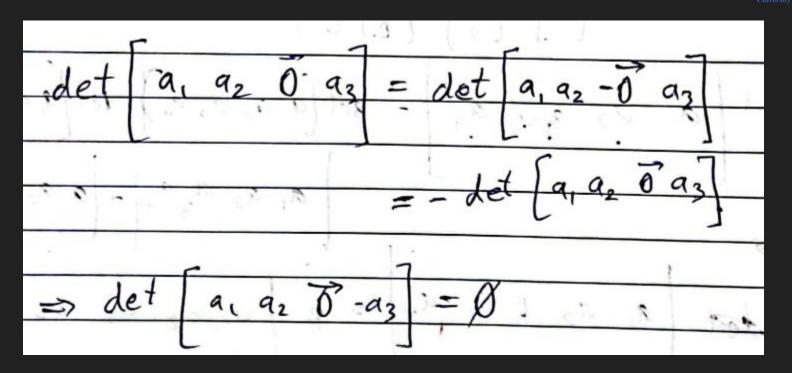
Swapping Columns

a, -Scanned with CamScanner

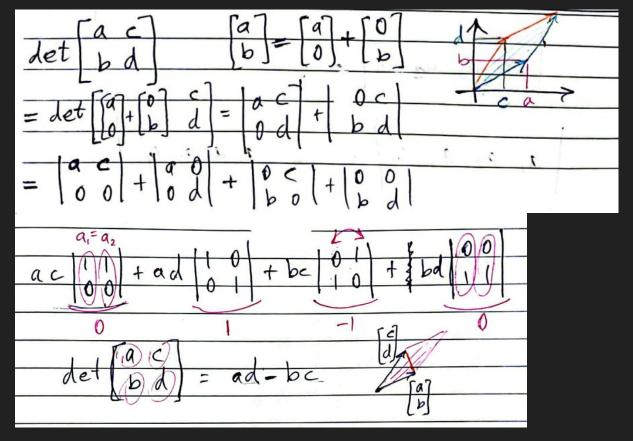
Permutation matrix



one zero column

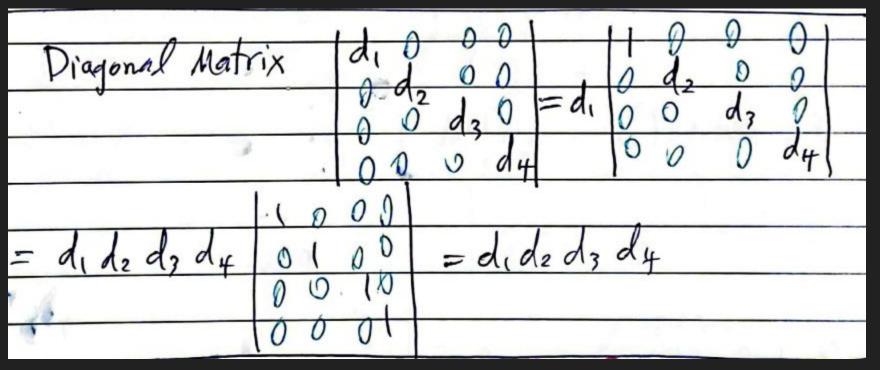


Determinant of a 2x2 matrix



Diagonal Matrix

K. N. Toos University of Technology



Scaling a matrix

$$A \in \mathbb{R}^{n \times n} \quad \alpha \in \mathbb{R} \quad A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

$$det(\alpha A) = det(\begin{bmatrix} \alpha a_1 & \alpha a_2 & \dots & \alpha & a_n \end{bmatrix})$$

$$= \alpha^n det(A)$$

$$\int S = S_2 = 4S_1$$

$$V_2 = 8V_1$$

Singular matrices

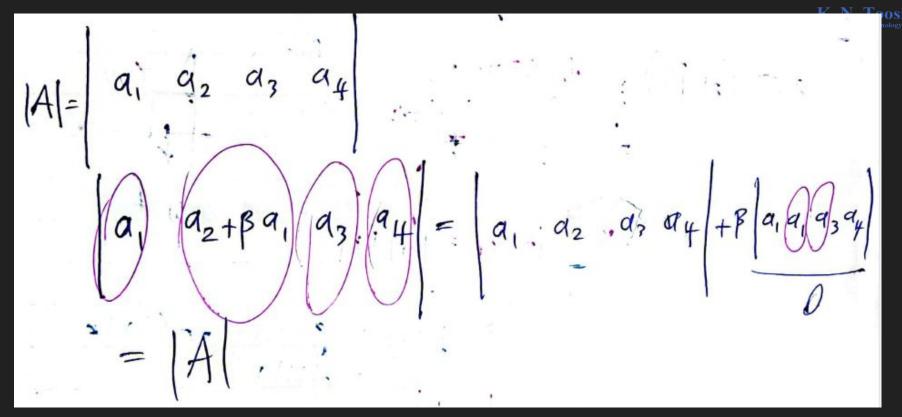
2 B iay. .d2 a ac x 1.

Singular Matrices

One column is a, az, an-1 bination of others an. $a_n = \sum_{i=1}^{n-1} \beta_i a_i$ $a_{n-1} \left(\sum_{i=1}^{n-1} B_i a_i \right) = \sum_{i=1}^{n-1} B_i \left[a_1 a_2 \cdots a_{n-1} a_n \right] = 0$ a

Determinant of a singular matrix is zero.

(is the converse true?)



 $= [a_1, a_2, a_3, a_4]$ Elimination Algorithm on columns do not change the determinant!

Triangular Matrices

K. N. 100S University of Technology

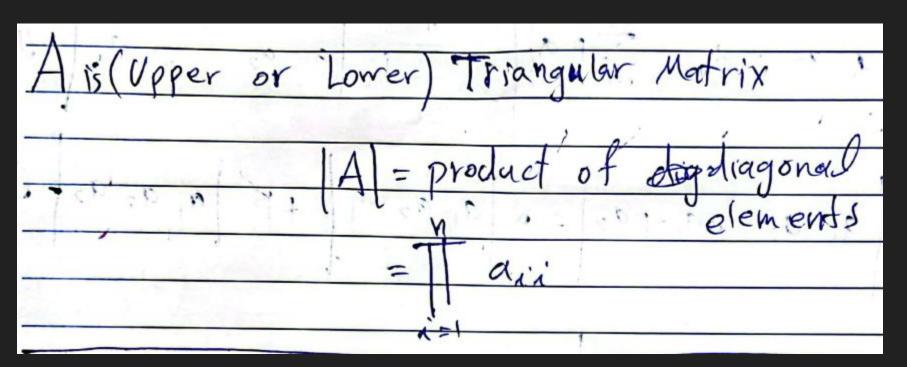
Matrices Triangu = 1×2×3 4 5 5 a, -= 3 a1-= 292

Triangular Matrices

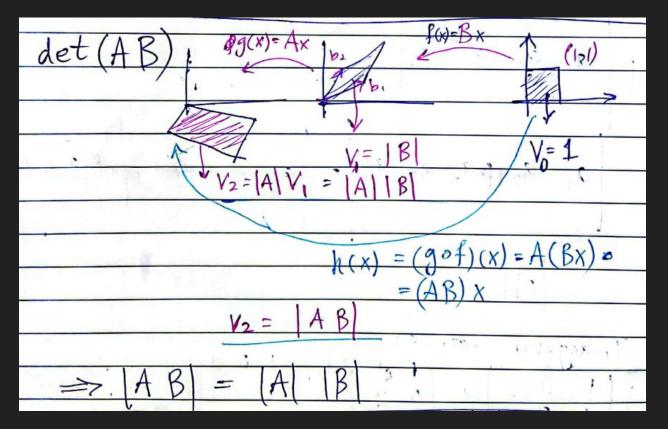
K. N. 100S University of Technology

Matrices Triangu = 1×2×3 4 5 a1-= 292 What if a diagonal element is zero.

Triangular Matrices



Product of matrices

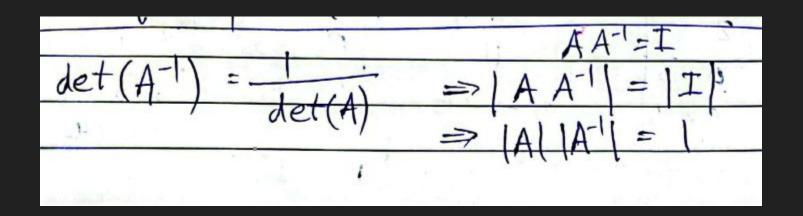


Product of matrices

det(A B) = det(A) det(B)

try proving using the previous properties.

Inverse



Determinant of a non-singular matrix

Determinant of a non-singular matrix

 \Rightarrow det(A) = 0 if and only if A is singular.

Transpose of a matrix

det
$$(A^{T}) = ?$$

LU decomposition
every $A \in R^{n \times n}$ has can be written as
 $P A = L$ upper
permutation Lower triangular
triangular
 $P A = L U \Rightarrow |P| |A| = |L||U| \Rightarrow |A| = \frac{TR_{ix}}{x} \frac{Tr_{u_{ix}}}{|P|}$
 $A^{T} P^{T} = U^{T}L^{T} \Rightarrow |P^{T}||A^{T}| = |L^{T}||U^{T}| \Rightarrow |A^{T}| = \frac{TR_{ix}}{x} \frac{Tr_{u_{ix}}}{|P|}$
 $|P| = |P^{T}| \Rightarrow P^{T}P = I \Rightarrow |P| |P^{T}| = 1$
 $P^{T} = P^{T} = I \Rightarrow |P| |P^{T}| = 1$
 $P^{T} = P^{T} = I \Rightarrow |P| |P^{T}| = 1$
 $P^{T} = P^{T} = I \Rightarrow |P| |P^{T}| = 1$
 $P^{T} = P^{T} = I \Rightarrow IP |I| P^{T}| = 1$
 $P^{T} = P^{T} = I \Rightarrow IP |I| P^{T}| = 1$
 $P^{T} = P^{T} = I \Rightarrow IP |I| P^{T}| = 1$

Transpose of a matrix

$det(A^T) = det(A)$

All the determinant properties about the columns of a matrix applies to the rows of a matrix.

Transpose of a matrix

Toos

