## Linear Algebra for Computer Science

Lecture 26

Positive definiteness

## Remember: Eigendecomposition of Real Symmetric and Hermitian matrices

$$\begin{array}{l} A \in IR^{n \times n} \\ A^{T} = A \end{array} \end{array} \qquad A = V \wedge V^{T} \qquad \text{orthogonal} \left( V^{T} V = V \wedge I = I \right) \\ A^{T} = A \end{array} \qquad A = V \wedge V^{T} \qquad A_{n} V \in IR^{n \times n} \\ A \in \mathbb{C}^{n \times n} \\ A^{*} = A \end{array} \qquad A = V \wedge V^{*} \qquad A \wedge e \mid R^{n \times n} \qquad d_{iagonal} \\ V^{*} V = V V^{*} = I \end{aligned}$$

#### Positive Definite (PD) matrices



Positive definite Symmetric AT=A ones - mo AEIR^n positive definite { A = A VXEIR<sup>h</sup> xTAX=>0  $X \neq 0$ 





K. N. Toosi University of Technology

Positive Semi-definite  

$$A^{T}=A$$
  
 $\forall x \in \mathbb{N}^{n}$   $x^{T}Ax \ge 0$   
 $A \ge 0$   
 $A \ge 0$   
Positive definite matrices  $\subset$  positive semi-definite  
matrices



#### Definiteness for complex matrices



For AEC<sup>nxn</sup> positive-difinites A\*=A for complex matrices For complex matrices X=0

#### Positive definite



# Note: Here, by positive-definite we mean symmetric positive definite

#### PD matrices might have negative (off-diagonal) elements







K. N. Toosi

#### Does $x^T A x = 0$ imply singularity? Case1: A symmetric

for some 
$$x \neq 0$$
 we have  $x^TAx = 0$   
 $Q(A = A^T) A symmetric. Is A singular.$   
 $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ x^TAx = 0 \end{bmatrix}$ 

#### Does $x^T A x = 0$ imply singularity? Case 2: A is PSD



#### Eigenvalues of PD and PSD matrices

A symmetric 
$$\Rightarrow A = VAV \Rightarrow Av_{k} = \lambda_{k}V_{k}$$
  
A is PD  $\Rightarrow$  what about its eigenvalues?  
Let  $\lambda$  be an eigenvalue of  $A \cdot k = \sqrt{40}$  be  
 $4\pi = 6$  a corresponding eigenvector.  
 $Av = \lambda v \Rightarrow \sqrt{A}v = \lambda \sqrt{V}$   $\lambda > 0$   
 $Ais PD \Rightarrow \sqrt{A}v = \lambda \sqrt{V}$   $\lambda > 0$   
 $v \neq 0 \Rightarrow \sqrt{V} = \|v\|^{2} > 0$   
A is PD  $\Rightarrow All$  eigenvalues (> 0) are positive.  
A is PSD  $\Rightarrow All$  eigenvalues (> 0) are nonnegable



#### PD ⇔ Positive Eigenvalues

A symmetric  
A symmetric  
all eigenvalkes  
are positive  

$$A = VAV \qquad LA26 \square$$

$$A = VAV \qquad LA26 \square$$

$$A = 0 \qquad A = VAV \qquad LA26 \square$$

$$A = 0 \qquad A = VAV \qquad LA26 \square$$

$$A = 0 \qquad A = VAV \qquad LA26 \square$$

$$A = 0 \qquad A = 0 \qquad A = VAV \qquad A = 0 \qquad A$$



#### PD ⇔ Positive Eigenvalues



 $\implies A = V \wedge V^{\dagger}$ real & LA 26 (III) A symmetric all eigenvalker are positive  $\Lambda = \begin{bmatrix} \lambda_{i} \\ \lambda_{n} \end{bmatrix}$   $\lambda_{i} > 0$   $\lambda = 1 - n$  $x^{T}Ax = x^{T}V\Lambda V^{T}x$ For any X ≠ Ø ∈ IR" = (V x) A (V x) $x^{T}A x = x^{T}A y \quad Y = \begin{bmatrix} x_{1} \\ y_{2} \end{bmatrix}$ Let  $y = V^T x \Rightarrow y \neq 0$  $x = V_y$  $y_{1}^{2}\lambda_{1} + y_{2}^{2}\lambda_{2} + \cdots + y_{n}^{2}\lambda_{n} > 0$ X = 0=> A positive definite

#### PSD ⇔ Nonnegative Eigenvalues



A symmetric matrix A is positive definite and Adle eigenvalues are p is PSD ( all eigenvalues are nonnegative.

#### When is $A^T A P D$ ?



#### The Correlation Matrix is PSD



Assume a, az, -, am ElRn, span(a,, -, am)=Rn (there are n independent vector among a, - am) Let  $a A = [a, a_2 - a_m]$ . C = ATA = Z ai ai EIR<sup>nxn</sup> is positive-definite C is called the correlation matrix made of a, a2, -, an.

#### The Covariance Matrix is PSD



Let 
$$a_1, a_2, \dots, a_m \in \mathbb{R}^n$$
,  $\overline{u} = \lim_{x \to 1} \sum_{i=1}^m a_i$ ,  
 $\overline{a_i} = a_i - \mu$   
The convelation matrix of  
 $\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}$  is called the covariance matrix.



### Covariance Matrix and Distribution of Data

data =  $D = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_3 \\ \vdots \\ \vdots \\ \vdots \\ \end{bmatrix}$  Correlation Matrix M did<sub>x</sub> =  $\frac{1}{m}D^TD$  $D^T D = \int d_1 d_2 - d_M$ dT  $\operatorname{Corr}(ny) = \frac{1}{m} \sum_{i=1}^{m} n_i y_i$  $d_{i}^{\dagger} = \left[ \pi_{i} \; y_{i} \; z_{i} \right]$  $\begin{bmatrix} m_1 & y_1 & z_1 \\ n_2 & y_2 & z_2 \\ n_M & y_M & z_M \end{bmatrix}$ Corr (n,4) D=0 Scanned with CamScanner

K. N. Toosi Iniversity of Technology

#### Decomposition of PSD matrices



#### Orthogonal Abmiguity in the Decomposition of PSD matrices

P=AA AEIRnXH Let HEIRnxn is orthogonal 

#### Square root of a PSD matrix



For a (symmetric) positive semi-definite matrix A there is a unique positive semi-definite matrix P such that A = P P (= P<sup>H</sup> P). P is called the square root of A and is denoted by  $A^{-\frac{1}{2}}$ .

#### Cholskey Decomposition



Cholskey Pecomposition Aelp<sup>nxn</sup>  
Every possitive semi definite matrix can be  
decomposed as 
$$A = L^{T}$$
 where L is to the  
Lower-triangular.  
 $A \in C^{hxn}$   $A = LL^{H} = LL^{*}$ .

#### Solving $A \times = b$ with Cholesky Decomposition When A is PD

The Cholesky decomposition can be computed much faster than the LU decomposition for a PSD matrix.

To Solve  $A = L L^T = b$ , let  $y = L^T = L^T = b$ . First solve for L = x; Then solve for  $L^T = y$  (similarly to LU decomposition).