Linear Algebra for Computer Science

Lecture 26

Positive definiteness

Remember: Eigendecomposition of Real Symmetric and Hermitian matrices

$$
\begin{aligned}
& \left.\begin{array}{l}
A \in \mathbb{R}^{n \times n} \\
A^{T}=A
\end{array}\right\} \\
& A=V \wedge V^{\top} \\
& \begin{array}{l}
\rightarrow \text { orthogonal }\left(V^{\top} V=W^{\top}=I\right) \\
\text { diagonal } \quad \Lambda, V \in \mathbb{R}^{n \times n}
\end{array} \\
& \left.\begin{array}{l}
A \in \mathbb{C}^{n \times n} \\
A^{*}=A
\end{array}\right\} \quad A=V \Lambda V^{*} \quad A \Lambda \in \mathbb{R}^{n \times n} \text { diagonal } \\
& V^{*} V=V V^{*}=I
\end{aligned}
$$

Positive Definite (PD) matrices

Positive definite Symmetric $A^{\top}=A$

$$
A>0
$$

$A \in \mathbb{R}^{n \times n}$
positive definite $\left\{\begin{array}{l}A^{\top}=A \\ \forall x \in \mathbb{R}^{n}\end{array}\right.$

$$
x \neq 0
$$

Positive Semi-definite (PSD) matrices

Positive Semi-definite

$$
\begin{array}{ll}
A^{\top}=A \\
\forall x \in \mathbb{R}^{n} \quad & x^{\top} A x \geqslant 0 \quad A \geqslant 0 \\
A>0 \Rightarrow A \geqslant 0
\end{array}
$$

Positive definite matrices C positive semi-delinite matrices

Positive negative and semi-negative matrices

Negative definite	$A=A^{\top}$		
	$-\forall x \in \mathbb{R}^{h}$		
	$x \neq 0$		
Negatir semi-definite		$x^{\top} A x<0$	
		$\forall x \in A^{\top}$	
		$x^{\top} A x \leq 0$	

Definiteness for complex matrices

For $A \in \mathbb{C}^{n \times n}$ positive-difinite $\left\{A^{*}=A\right.$ for complex matrices

$$
\left\{\begin{array}{l}
\forall x \in \mathbb{C}^{n} \\
x \neq 0
\end{array} \quad x^{*} A x>0\right.
$$

Positive definite

Note: Here, by positive-definite we mean symmetric positive definite

PD matrices might have negative (off-diagonal) elements

$$
A=\left[\begin{array}{cc}
1 & -\varepsilon \\
-\varepsilon & 1
\end{array}\right]
$$

$$
\begin{aligned}
X^{\top} A X= & {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -\varepsilon \\
-\varepsilon & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } \\
= & x_{1}^{2}+x_{2}^{2}-2 \varepsilon x_{1} x_{2} \\
& x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}=\left(x_{1} \mp x_{2}\right)^{2} \\
& x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}=\left(x_{1}+x_{2}\right)^{2}
\end{aligned}
$$

Positive Definite matrices are non-singular
$A>0 \quad(A$ is $P D)$
LA 26
Can A be singular?
A singular $\Rightarrow \exists \begin{gathered}x \neq 0 \\ x \in \mathbb{R}^{n}\end{gathered} \quad A x=0 \Rightarrow x^{\top} A x=0$
$x \in \mathbb{R}^{n} \quad \Rightarrow A$ is not PD ! $0^{\text {亏े० }}$
All PD matrices are non-singular

Does $x^{\top} A x=0$ imply singularity? Case: A symmetric
for some $x \neq 0$ wee have $x^{\top} A x=0$ Q $\left(A=A^{\top}\right)$ A symmetric. Is A singular.

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad x^{\top} A x=0
$$

Does $x^{\top} A x=0$ imply singularity?
Case 2: A is PSD

A: positive-semidefinite, $\bar{x}^{\top} A x=0$ for some is A singular? $x^{\top} \vee \wedge^{\top} x=0 \Rightarrow y \neq 0$ y ${ }^{\top} A x=0$

Eigenvalues of PD and PSD matrices
A symmetric $\Rightarrow A=V \Lambda V^{\top} \Rightarrow A V_{i}=\lambda_{i} V_{i}$
A is $P D \Rightarrow$ what about if's eigenvalues?
Let λ be an eigenvalue of $A \cdot \& ~ V \neq 0$ be a corresponding eigenvector.

$$
\left.\begin{array}{rl}
A v=\lambda v & \Rightarrow v^{\top} A v=\lambda v^{\top} v \\
A \text { is } P D & v^{\top} A v>0 \\
v \neq 0 & \Longrightarrow v^{\top} v=\|v\|^{2}>0
\end{array}\right\} \lambda>0
$$

A is $P D \Rightarrow$ All eigenvalues (>0) are positive.
A is PSD \Longrightarrow All eigenvalues $\geqslant 0$) are nonnegative
$P D \Leftrightarrow$ Positive Eigenvalues
$\left.\begin{array}{l}\begin{array}{c}\text { real \& } \\ \text { all eigenvalues } \\ \text { are positive }\end{array} \\ \lambda_{\lambda_{n}}\end{array}\right\} \Rightarrow A=V \Lambda V^{\top} \quad \begin{aligned} & \text { LA 26 (III) }\end{aligned}$
For any $x \neq \varnothing \in \mathbb{R}^{n}$

$$
\begin{aligned}
x^{\top} A x & =x^{\top} V \wedge V^{\top} x \\
& =\left(V^{\top} x\right)^{\top} \not \Delta\left(V^{\top} x\right)
\end{aligned}
$$

Let $y=v^{\top} x \underset{x=v_{y}}{\Rightarrow} y \neq 0$

$$
x=0
$$

$$
\begin{aligned}
& x^{\top} A x=y^{\top} \Lambda y \quad y=\left[\begin{array}{l}
y_{1} \\
y_{n}
\end{array}\right] \\
& y_{1}^{2} \lambda_{1}+y_{2}^{2} \lambda_{2}+\cdots+y_{n}^{2} \lambda_{n}>0
\end{aligned}
$$

$\Rightarrow A$ positive definite
$P D \Leftrightarrow$ Positive Eigenvalues

For any $x \neq \varnothing \in \mathbb{R}^{n} \quad x^{\top} A x=x^{\top} \vee \wedge V^{\top} x$

$$
\text { Let } y=v^{\top} x \underset{\substack{x=V_{y} \\
x=0}}{\Rightarrow y \neq 0} \quad \begin{array}{ll}
\left.x^{\top} A x=v^{\top}\right)^{\top} \wedge y\left(v^{\top} x\right) \\
y_{s}^{\top}\left[\begin{array}{l}
y_{1} \\
y_{n}
\end{array}\right] \\
y_{1}^{2} \lambda_{1}+y_{2}^{2} \lambda_{2}+\cdots+y_{n}^{2} \lambda_{n}>0
\end{array}
$$

$\Rightarrow A$ positive definite
$P S D \Leftrightarrow$ Nonnegative Eigenvalues

A symmetric matrix
A is positive definite Add eigenvalues are positive symenत्व
$A=A^{T}$ is $P S D \Leftrightarrow$ all eigenvalues are nonnegative.

When is $A^{\top} A$ PD?

$$
\begin{aligned}
& C=A^{\top} A \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m \times n} \text {, } A \text { has full \&column rams. } \\
& \text { 執 } \\
& \underset{v}{\operatorname{rank}}(A)=n, m \geqslant n \\
& A=\left[\begin{array}{c}
a_{1}^{\top} \\
a_{2}^{\top} \\
\vdots \\
a_{m}^{\top}
\end{array}\right] \quad A^{\top}=\left[\begin{array}{llll}
a_{1} & a_{2} & -a_{m}
\end{array}\right] \\
& C=A^{\top} A \quad A \text { has full column rank } \Rightarrow A x \neq 0 \\
& \text { Choose any } x \in \mathbb{R}^{n}, x \neq 0 \Rightarrow \text { for all } x \neq 0 \\
& \left.x^{\top} C x=x^{\top} A^{\top} A x \Rightarrow \overrightarrow{(A x}\right)^{\top}(A x)=\|A x\|>0 \\
& A^{\top} A \text { is positive definite. }
\end{aligned}
$$

The Correlation Matrix is PSD

Assume $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m} \in \mathbb{R}^{n}, \operatorname{span}\left(a_{1}, \cdots, a_{m}\right)=\mathbb{R}^{n}$ (there are n independent vector among $\overrightarrow{a_{1}}-\overrightarrow{a_{m}}$) Let a $A^{\top}=\left[\begin{array}{lll}a_{1} & a_{2}- & a_{m}\end{array}\right]$.
$C=A^{\top} A=\sum a_{i} a_{i}^{\top} \in \mathbb{R}^{n \times n}$ is positive-definite
C is called the correlation matrix made of $a_{1}, a_{2}, \ldots, a_{n}$.

The Covariance Matrix is PSD

Let $a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, \vec{\mu}=\frac{1}{m} \sum_{i=1}^{m} a_{i}$,

$$
\bar{a}_{i}=a_{i}-\mu
$$

The correlation matrix of $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ is called the covariance matrix.

Covariance Matrix and Distribution of Data

$$
\begin{aligned}
& a_{1}, a_{2}, a_{m} \quad \mu==\frac{1}{m} \sum_{i=1}^{m} a_{i} \\
& \bar{a}_{i}=a_{i}-\mu \\
& \sum_{\downarrow}=\sum_{i=1}^{m} \bar{a}_{i} \bar{a}_{i}^{\top}=\sum_{i=1}^{m}\left(a_{i}-\mu\right)\left(a_{i}-\mu\right)^{\top}
\end{aligned}
$$

covariance matrix is positive semi definite $\operatorname{span}\left(\bar{a}_{1},-, \bar{a}_{m n}\right)=\mathbb{R}^{n} \Rightarrow \sum$ is $P D$

Covariance Matrix and Distribution of Data

$$
\begin{aligned}
& \text { dato }=D=\left\{\begin{array}{c}
d_{1}^{\top} \\
d_{2}^{\top} \\
d_{3}^{\top} \\
d_{M}^{\top}
\end{array}\right] \\
& D^{\top} D=\left[\begin{array}{llll}
d_{1} & d_{2} & \cdots & d_{M}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{\top} \\
d_{2}^{\top} \\
\vdots \\
d_{M}^{\top}
\end{array}\right] \\
& C=\frac{1}{M} \sum_{i=1}^{M} \underbrace{d_{i} d_{i}^{\top}}_{n \times n}=\frac{1}{N} D^{\top} D \\
& d_{i}^{T}=\left[\begin{array}{lll}
x_{i} & y_{i} & z_{i}
\end{array}\right] \quad \operatorname{corr}(x, y)=\frac{1}{\mu} \sum_{i=1}^{\mu} x_{i} y_{i} \\
& {\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{\mu} & y_{M} & z_{m}
\end{array}\right] \xrightarrow[n]{ } \operatorname{corr}(x, y)>0}
\end{aligned}
$$

Decomposition of PSD matrices

Ane y positive semi-definite matrix P can be decomposed as $P=A^{\top} A . \quad A \in \mathbb{R}^{m \times n}$

Orthogonal Abmiguity in the Decomposition of PSD matrices

$$
P=A^{\top} A \quad A \in \mathbb{R}^{n \times n}
$$

Let $H \in \mathbb{R}^{n \times n}$ is orthogonal

$$
\begin{aligned}
P & =A^{\top} A=A^{\top} I A=A^{\top} H^{-1} H^{\top} A=A^{\top} H^{\top} H A \\
& =(H A)^{\top}(H A) \\
& =A^{\top}\left(A^{\top}\right.
\end{aligned}
$$

Square root of a PSD matrix

For a (symmetric) positive semi-definite matrix A there is a unique positive semi-definite matrix P such that $A=P P$ (= $P^{H} P$). P is called the square root of A and is denoted by $A^{-\frac{1}{2}}$.

Cholskey Decomposition

Cholskey Decomposition
Every positive semi definite matrix can be decomposed as $A=L^{\top}$ where L is $A \in \mathbb{C}^{n \times n} \quad A=L L^{H}=L L^{*}$. Lower-triangalar.

Solving $A x=b$ with Cholesky Decompotion When A is PD
$\begin{gathered}\text { Solvy Lineer Equotion } \quad A x=b \quad A \in \mathbb{R}^{n \times n} \quad A \text { is } P D \\ A=L L^{T}\end{gathered} \quad A x=b=L L^{T} x=b$.

The Cholesky decomposition can be computed much faster than the LU decomposition for a PSD matrix.

To Solve $A x=L L^{\top} x=b$, let $y=L^{\top} x$. First solve for $L y=$ x; Then solve for $L^{\top} x=y$ (similarly to $L U$ decomposition).

