Linear Algebra for Computer Science

Lecture 27
Singular Value Decomposition

Remember: Diagonalization \& Eigendecomposition

Problem with Eigenvalue Decomposition

- Only works for square matrices
- Eigen-basis might not exist
- Eigen-basis might not be orthogonal
- Eigen-basis might be complex for real matrices

Problem with Eigenvalue Decomposition

- Only works for square matrices
- Eigen-basis might not exist
- Eigen-basis might not be orthogonal
- Eigen-basis might be complex for real matrices

Solution: Use different bases for domain and co-domain!

Diagonalization using two different bases

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \\
& Q f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \text { might not be diayonalicable } \\
& f(x)=A x \\
& \underline{v_{1}, v_{2} \cdots, v_{n} \in R^{n}} \\
& y=A x \\
& V=\left[v_{1}, v_{2} \ldots v_{n}\right] \in \mathbb{R}^{n \times n} \quad U=\left[u_{1} u_{2}, u_{m}\right] \in \mathbb{R}^{m \times m} \\
& x^{\prime}=\text { representation of } x \text { in basis } v_{1}, v_{2}, \ldots, v_{n}=V^{-1} x \\
& y^{\prime}=" \text { " } y \text { in } u_{1}, u_{2}, \ldots, u_{m}=U^{-1} y \\
& \left.\Rightarrow \begin{array}{l}
x=V x^{\prime} \\
y^{\prime}=U y^{\prime}
\end{array}\right\} \quad U y^{\prime}=A V x^{\prime} \Rightarrow y^{\prime}=\underbrace{U^{-1} A V x^{\prime}}_{\text {like it to } b}
\end{aligned}
$$

Diagonalization using two different bases

$$
\begin{aligned}
& \left.\Rightarrow \begin{array}{l}
x=V x^{\prime} \\
y^{\prime}=U y^{\prime}
\end{array}\right\} \quad U y^{\prime}=A V x^{\prime} \Rightarrow y^{\prime}=\underbrace{U^{-1} A V x^{\prime}} \\
& \text { like it to be } \\
& \text { diagonal }
\end{aligned}
$$

Like $u_{1}, u_{2}, \ldots, v_{n}$ be orthonormal, so be $u_{1}, u_{2}, \ldots, u_{m}$

$$
\begin{aligned}
& \Rightarrow U^{-1}=U^{\top}, V^{-1}=V^{\top} \\
& y^{\prime}=U^{-1} A V x^{\prime} \Rightarrow y^{\prime}=U^{\top} A V x^{\prime}
\end{aligned}
$$

We like $\left\{\begin{array}{l}U^{\top} U=U U^{\top}=I_{m \times m} \\ V^{\top} V=V V^{\top}=I_{n \times n} \\ \Sigma=U^{\top} A V \text { be diagonal }\end{array}\right.$

A new decomposition!

Eigen decomposition $A=V^{0} \bigwedge V^{-\top}$ invertible
x-decomposition $A=U^{*} \Sigma V^{-1}=U^{\top} \sum V_{\rightarrow \text { orthogonal }}^{\top}$ orthogonal

A new decomposition!

$$
\begin{aligned}
& y=A x \Rightarrow \text { Change of basis } \vec{y}=x_{1}^{\prime} \vec{u}_{1}^{\prime}+y_{2}^{\prime} \overrightarrow{u_{2}}+\cdots+y_{m}^{\prime} \vec{u}_{n} \\
& \vec{y}=U y^{\prime} \Rightarrow y^{\prime}=U_{y}^{\top} \\
& y^{\prime}=\sum x^{\prime} \\
& x=V_{x^{\prime}} \Rightarrow x^{\prime}=V^{\top} x \\
& U^{\top} y=\sum V^{\top} x \xrightarrow[y=A x]{\longrightarrow} U^{\top} A x=\sum V^{\top} x \text { for all } x \in \mathbb{R}^{n} \text {. } \\
& \Longrightarrow U^{\top} A=\Sigma V^{\top} \\
& \Longrightarrow A V=U \Sigma \\
& y=A x \Rightarrow U y^{\prime}=A V x^{\prime} \underset{y^{\prime}=\Sigma x^{\prime}}{\Longrightarrow} U \Sigma x^{\prime}=A V x^{\prime} \text { for all } x^{\prime} \\
& \Longrightarrow U \Sigma=A V \\
& A V=U \Sigma \Rightarrow A]\left[E_{1} v_{2} \cdot v_{n}\right]=\left[u_{1} u_{2} \cdots u_{m}\right]\left[\begin{array}{ll}
\sigma_{1} \sigma_{2} \\
\sigma_{2}
\end{array}\right] l=\min (m, n)
\end{aligned}
$$

A new decomposition!

$$
\begin{aligned}
& A V=U \Sigma \Rightarrow[A]\left[\begin{array}{lll}
v_{1} v_{2} & v_{n}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{m}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
\sigma_{2} & \sigma_{l}
\end{array}\right] l=\operatorname{lin}(m, n) \\
& \\
&
\end{aligned}
$$

left singular rector

A new decomposition!

Eigen value $\quad A V_{i}=\lambda_{i} V_{i}$ there are $\ell(1 \leqslant l \leqslant n)$ eigenother
Singular value $A v_{i}=\sigma_{i} u_{i}$

$$
\left.u_{1},-u_{m}\right\}
$$

Example

$$
\begin{aligned}
& A V=U \sum \quad A \in \mathbb{R}^{3 \times 2} \\
& {\left[\begin{array}{ll}
a_{11} & a_{11} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right]=\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{22} & u_{22} \\
u_{21} & u_{32} & u_{3}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right] \quad \begin{array}{l}
A v_{1}=\sigma_{1} u_{1} \\
A v_{2}=\sigma_{2} \\
u_{2}
\end{array}}
\end{aligned}
$$

Eigen Decomposition vs Singular Value Decomposition

$$
\text { Eigenvalue } \quad A V=V \Lambda \stackrel{\text { diagorolizable }}{\Longrightarrow} A=V \Lambda V^{-1} \text {. }
$$

$$
\text { Singular value } A V=U \Sigma \Rightarrow A=U \Sigma V^{\top}
$$

al mays

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& A=U \sum V^{T} \text { : Singular Value Decomposition } \\
& A=\left[\begin{array}{lll}
u_{1} u_{2} & u_{m}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & \\
\sigma_{2} & \\
& \\
& \\
&
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\top} \\
v_{2}^{\top} \\
v_{n} \\
v_{n}^{\top}
\end{array}\right] \\
& \sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{\min (m, n)} \quad U, V \text { orthogonal }
\end{aligned}
$$

SVD and the relation between the row

 space and col $A \in \mathbb{R}^{m \times n} \quad \operatorname{rank}(A)=r$
$\tilde{f}(x)=A x$

$$
\begin{aligned}
& \forall x \in R(A) \quad \tilde{f}(x)=f(x) \\
& \operatorname{dim}(R(A))=\operatorname{dim}(C(A))=r
\end{aligned}
$$

$$
\tilde{f} \text { is one-t -one \& onto (invertible) }
$$

