Linear Algebra for Computer Science

Lecture 29

Low-rank Approximation Principal Component Analysis

Low-rank matrices

A
$$
rank(A) = r \le min(m,n)
$$

A = U $\begin{bmatrix} a & b \\ c & c \end{bmatrix} V^T$
(A) $\begin{bmatrix} a & a \\ a & b \end{bmatrix} \in \mathbb{R}^{200\times n}$

Near-low-rank matrices

A
$$
\infty R^{m \times n}
$$
 is of rank $r \le \min(m,n)$
\nWhat we have is
\n $\widetilde{A} = A + N \Rightarrow \text{small noise matrix}$
\n $\text{rank}(\widetilde{A}) = \min(m,n)$
\n $A \bullet \in \mathbb{R}^{100 \times 10}$
\n $\text{rank}(\widetilde{A}) = 10$
\n $\text{rank}(\widetilde{A}) = 10$
\n $\widetilde{A} = V \begin{bmatrix} 20.1_{15} & \text{max} \\ 0 & 4.0_{10}^{3} \\ 0 & 0.01 \end{bmatrix}$

Near-low-rank matrices

Example

 $A = [a_1 a_2 a_3] \in R^{3 \times 3}$ $\text{Var}(A) = 2$ \mathbf{C}_1 σ_{2} \mathscr{E}_3 σ_i

Matrix Norms

Low-rank Approximation

find A s.t.
$$
A - \tilde{A}
$$

\n
$$
\lim_{m \to \infty} ||A - \tilde{A}||_F
$$
\ns.t. rank(A)=r
\n
$$
||\tilde{X}||_F = \sum_{\lambda=1}^{m} \sum_{j=1}^{n} x_{\lambda j}^2
$$
\n
$$
|ov rank approximation (Eckart-Young-Lursky))
$$
\n
$$
\tilde{A} = U \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_n \end{bmatrix} V^T
$$
\n
$$
\approx A = U \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} V^T
$$

Low-rank Approximation

Application: Reduce memory/computation

Application: Reduce memory/computation

Application: Computing the Fundamental Matrix in computer vision

Stundamental $M₁$ M_{σ} matrix $rank(F)=2$

Eigen-decomposition as an optimization problem

A symmetric
\n
$$
\frac{\text{max}}{x} \frac{x^T A x}{x^T x} = \frac{\sqrt{x} A x}{\|x\|^2}
$$
\n
$$
\frac{\text{max}}{\text{min}} \frac{(x^T A x)}{\|x\|^2} = \frac{x^T x}{\sqrt{x}} = 1
$$
\n
$$
\frac{\sqrt{x}}{\text{min}} \frac{x^T A x}{\sqrt{x^2 - x^2}} = \frac{\sqrt{x}}{\text{min}} \frac{x^T A x}{\|x\|^2} = \frac{\sqrt{x}}{\text{max}} \frac{x^T A x}{\sqrt{x}} = \frac{\sqrt{x}}{\text{max}} \frac{x^T A x}{\sqrt{x
$$

Eigen-decomposition as an optimization problem Maggarie -> espen n real eigenvector MARRINA Eigenvalues $\lambda_1 > \lambda_2 > ... > \lambda_{n-1} > \lambda_n$
Corresponding $\overrightarrow{v_1} \quad \overrightarrow{v_2} \quad - \quad \overrightarrow{v_{n-1}} \quad \overrightarrow{v_n}$ $Figenvector$
 $Xmax = V$ X_{min} = V_n $||x|| = 1$ \vec{v}_4 = argnax xTAx subject to \vec{x} xTx=1
 \vec{v}_2 = argnax xTAx subject to \vec{x} xTx=1
 \vec{v}_2 = argnax xTAx s.t. xTx=1, xLV,, xLV $\overrightarrow{v_3}$ = argmax $x^T Ax$ s.t. $x^T x$ =1, $x \perp v_1$, $x \perp v_2$ $A = VAV^T = D \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T + \cdots + \lambda_n v_n v_n^T$
 $A x = \lambda_1 v_1 v_1^T x + \lambda_2 v_2 v_2^T x + \cdots + \lambda_n v_n v_n^T x$

 $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\max_{x} \frac{\|Ax\|}{\|x\|} = ?$ $max \frac{\left\|A\right\|^{2}}{\|x\|^{2}} = \frac{(Ax)^{T}(Ax)}{x^{T}x} = \frac{x^{T}A^{T}Ax}{x^{T}x}$ $max_{x} \frac{\left\|Ax\right\|^{2}}{\left\|x\right\|^{2}} = \frac{\lambda_{max}(A'A)}{max} = \sigma_{max}^{2} = \sigma_{i}^{2}$ $\max_{X} \frac{\|\mathbf{Ax}\|}{\|x\|} = \sigma_i = \sigma_{\text{max}}$
 $\mathbf{argmax}_{X} = \frac{\|\mathbf{Ax}\|}{\|x\|} = \overrightarrow{v_i} \quad \mathbf{A} = U \sum \begin{bmatrix} v_i^T \\ v_i^T \\ v_n^T \end{bmatrix}$

$$
y = Ax \in \mathbb{R}^{m}
$$
\n
$$
x_{max} = argmax \quad ||Ax||_{2}
$$
\n
$$
= argmax \quad |Ax||_{2}
$$
\n
$$
= argmax \quad |Ax||_{2}
$$
\n
$$
= argmax \quad xTATAx
$$
\n
$$
= xT
$$

 $\begin{array}{c|c|c|c|c|c|c|c} \nmin\limits_X & ||A \times || & s.t. & ||x|| = 1 \\ \narray \narray \narray \narray \n & \text{argmin} & ||A \times || & s.t. & ||x|| = 1 \\ \n & & & & & & & & \n \end{array}$ min σ_{max} . \bigcup $\begin{bmatrix} \sigma_z \\ \sigma_z \end{bmatrix}$ $\binom{5}{1}$

Remember: Solving Homogeneous Equations

K. N. Toosi

$$
\begin{cases}\n2x + 3y + z = 0 & \text{homogeneous} \\
-4x + y - z = 0 & \text{equations} \\
x - y = 0\n\end{cases}
$$
\n
$$
if \begin{bmatrix} x \\
 y \\
 z \end{bmatrix} is a solution, so is \begin{bmatrix} x \\
 y \\
 x \end{bmatrix} for all x = 0\n\end{cases}
$$
\n
$$
\begin{bmatrix} 2 & 3 & 1 \\
 -4 & 1 & -1 \\
 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\
 y \\
 z \end{bmatrix} = \begin{bmatrix} 0 \\
 0 \\
 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} = \begin{bmatrix} n_1 n_2 & n_3 \\
 n_4 n_5 & n_6 \\
 n_7 n_8 & n_8 \end{bmatrix} \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} n_1 n_2 & n_3 \\
 n_4 n_5 & n_6 \\
 n_7 n_8 & n_9 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix}
$$
\n
$$
\begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ y_k \end{b
$$

Application: Noisy Homogeneous Equations

In practice A has full rank,
$$
N(A) = \{0\}
$$

\n $A = \boxed{\frac{1}{\sqrt{2}}}$ m $\gg n$ in most situations.
\n $M \gg n$ in most situations.
\n $A \times = 0 \Rightarrow \text{no solution}$
\nFind $X_{*} = \text{argmin}_{X} ||A x||$ subject to $||x|| = 1$
\n $= \text{argmin}_{X_{*} = 0} ||A x|| = \text{argmin}_{X_{*} = 0} ||A x||^{2} = x^{T}A^{T}Ax$
\n $A = U^{\sigma_{T}}e_{x_{*}} = \prod_{r \neq T} \frac{V_{r}^{T}}{V_{r}^{T}} \quad \text{singularity vector for smallest } \sigma_{r}$

Zero centering data

 x_1' , x_2' , $-$, $x_n' \in \mathbb{R}^m$ $X = [x_1, x_2 - x_1]$ m $x_i' - \mu$

Projecting points on a line

К.

Find direction maximizing variance

$$
V = arg max \frac{\sum_{x=1}^{n} (vT_{x})^{T}x_{i}}{vT_{x}} = \frac{\sum_{x=1}^{n} (vT_{x})^{T}x_{i}}{vT_{x}}
$$
\n
$$
V = arg max \frac{\sum_{x=1}^{n} (vT_{x})^{2} \cdot x_{i}}{vT_{x}}
$$
\n
$$
= \sum_{x=1}^{n} (vT_{x})^{T}x_{i}
$$
\n
$$
= \sum_{x=1}^{n} vT(x_{i}x_{i})/x_{i}
$$
\n
$$
= \sum_{x=1}^{n} vT(x_{i}x_{i})/x_{i}
$$
\n
$$
= \sum_{x=1}^{n} vT(x_{i}x_{i})/x_{i}
$$
\n
$$
= \sum_{x=1}^{n} (vT_{x})^{T}x_{i}
$$

Find direction maximizing variance

Var
$$
(x_1 - x_n)
$$

\nVar $\mathbf{Q} = \mathbf{V}^T (\sum x_i x_i^T) \mathbf{V}$
\nVar $\mathbf{Q} = \mathbf{V}^T (\sum x_i x_i^T) \mathbf{V}$
\nVar $\mathbf{Q} = \mathbf{X} \times \mathbf{V}^T \mathbf{S} = (x_1 - x_n)^T (x_1^T - x_n^T) \mathbf{V}$
\nVar $\mathbf{X} = [x_1, x_2, ... x_n]$
\n $\mathbf{C} = \mathbf{X} \mathbf{X}^T \mathbf{S} = [x_1 - x_n] \begin{bmatrix} x_1^T \\ x_n^T \end{bmatrix} = \sum_{i=1}^n x_i x_i^T$
\nGranircone matrix

Find direction maximizing variance

Principal Component Analysis (PCA)

 V_{max} = the eigenvector of XX^T correction
Corresponding to the largest eigenvalue max corresponding to the singular vector $e^{if(x)}$
 $e^{if(x)}$ $e^{if(x)}$ singular vector $\begin{array}{c} \circ f \times = \alpha, \end{array}$ 15 1 . 41 Principal Component Analysis (PCA)

