Linear Algebra for Computer Science

Lecture 32
Regularization, the Gradient Vector

How to avoid overfitting

- Limit model complexity (e.g. degree of polynomial)
- Regularization

Regularization

$$
\begin{gathered}
p=17 \quad y=\frac{a_{17} x^{17}+a_{16} x^{16}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}=f(x, \theta)}{\left(x_{i} ; y_{i}\right)} x_{i} \in[0,1] \\
R(\theta)=R\left(a_{0}, a_{1}, \ldots, a_{p}\right)=\int_{0}^{1}\left(\frac{d}{d \theta} f(x, \theta)\right)^{2} d x \\
\left(x_{1}, y_{1}\right. \\
R(\theta) \text { large }
\end{gathered}
$$

Regularization

$$
\begin{aligned}
R(\theta)=\int_{0}^{1}\left(\frac{d}{d x} \sum_{i=0}^{p} a_{i} x^{i}\right)^{2} d x & =\int_{0}^{1}\left(\sum_{i=0}^{p} i a_{i} x^{i-1}\right)^{2} d x \\
\Rightarrow R(\theta) & =\theta^{\top} M \theta
\end{aligned}
$$

a simpler choice $\Leftarrow R(\theta)=\theta^{\top} \theta=\|\theta\|^{2}$

Regularization
$\frac{\operatorname{cost} \text { function: }\left(\sum_{i=1}^{N} f\left(x_{i}\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]\right)-y_{i}\right)^{2}+8 R\left(a_{1}, \cdots, a_{n}\right)}{C(\theta)=\left(\sum_{i=1}^{N} f\left(n_{i}, \theta\right)-y_{i}\right)^{2}+\gamma \underbrace{R(\theta)}_{\text {Regularize }}} \begin{array}{c}\text { Regularization }\end{array}]$
γ Regularization parameter $\gamma \uparrow$ emphasis on smoothness (hyperparameter) $\gamma \downarrow$ " data

Simple Example: ' $R(\theta)=R\left(a_{0}, a_{1}, \ldots, a_{n}\right)=a_{0}^{2}+a_{1}^{2}+\cdots+a_{n}^{2}$

$$
=\|\theta\|^{2}
$$

Solving Regularized Polynomial Regression

$$
\begin{aligned}
& C(\theta)=\|M \theta-y\|^{2} \quad \text { polynomial regression } \\
& R(\theta)=\theta^{\top} \theta=\|\theta\|^{2} \\
& A^{*}=\underset{\theta}{\operatorname{argmin}} C(\theta)+\gamma R(\theta) \\
& \text { - } \operatorname{argmin}\left\|M_{\theta-y}\right\|^{2}+\gamma\|\theta\|^{2} \\
& =\quad\left\|M_{\theta}-y\right\|^{2}+\|\sqrt{r} I \theta\|^{2} \\
& -\underset{\theta}{\operatorname{argmin}}\left\|\left[\begin{array}{c}
M \\
\sqrt{8} I
\end{array}\right] \theta-\left[\begin{array}{l}
y \\
0
\end{array}\right]\right\|^{2} \\
& \|u\|^{2}+\|v\|^{2}=\|[4]\|^{2} \\
& \|B \theta-z\|^{2} \\
& \theta^{*}=\left(B^{\top} B\right)^{-1} B^{\top} Z
\end{aligned}
$$

Nonlinear in input / Linear in parameters

a so far $f(x, \theta)=\phi(x)^{\top} \theta$ linear in θ

$$
\begin{aligned}
& f(x, y)=\tanh (x) a+(\sin x) b+(\log x) c+\exp (x) d \\
&=[\tanh (x), \sin x, \log x, \exp (x)]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \\
& C(\theta)=\left\|\left[\begin{array}{c}
\phi\left(x_{1}\right)^{\top} \\
\phi\left(x_{2}\right)^{\top} \\
\vdots \\
\phi\left(x_{n}\right)^{\top}
\end{array}\right] \theta=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]\right\|^{2}
\end{aligned}
$$

What if model is not linear in parameters?

$$
\left.\begin{array}{l}
C(\theta)=C\left(\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
1 \\
\theta_{p}
\end{array}\right]\right) \\
\frac{\partial C}{\partial \partial_{1}}(\theta)=0 \\
\frac{\partial C(\theta)=0}{\partial \partial_{2}} \\
\frac{\partial C(\theta)}{\partial \partial_{p}}=0
\end{array}\right\}
$$

n equation:
n unknowns $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)$

Solve for ∂
Guise gradient basel optimization

What if model is not linear in parameters?

1. Compute the partial derivatives and set them equal to zero
a. n (nonlinear) equations in n unknowns
b. Cannot be solved in most cases
2. Use Gradient-based optimization

1D derivative

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)=\left.\frac{d f}{d x}\right|_{x=x_{0}}=? \\
& f^{\prime}\left(x_{0}\right)=\lim _{\delta \rightarrow 0} \frac{f\left(x_{0}+\delta\right)-f\left(x_{0}\right)}{\delta}
\end{aligned}
$$

N -dimentional functions: Directional
Depivativen

$$
C(\theta)=C\left(\theta_{1}, \theta_{2},-, \theta_{p}\right)
$$

$$
D[u] C\left(\theta_{0}\right)=\frac{C\left(\theta_{0}+\alpha u\right)-C\left(\theta_{0}\right)}{\alpha}=\left.\frac{d}{d \alpha} C\left(\theta_{0}+\alpha u\right)\right|_{\alpha=0}
$$

General Directional Derivative

$$
\begin{aligned}
& f(x) \\
& f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& D[u] f\left(x_{0}\right)=\left.\frac{d}{d \alpha} f\left(x_{0}+\alpha u\right)\right|_{\alpha=1} ^{-1 x} x=0 \\
& \left.\mathbb{R}^{n}, u \in \mathbb{R}^{n}\right) \\
& \|A\|=1
\end{aligned}
$$

Let u be any vector $\begin{array}{r}(\text { not just aunit } \\ \text { vector }\|u\|=1)\end{array}$

$$
D[u] f\left(x_{0}\right)=\left.\frac{d}{d \alpha} f\left(x_{0}+\alpha u\right)\right|_{\alpha=0} \text { directional derivative }
$$

Scaling the direction

$$
\begin{aligned}
D\left[\alpha_{\beta} u\right] f\left(x_{0}\right) & =\left.\frac{d}{d \alpha} f\left(x_{0}+\alpha \beta u\right)\right|_{\alpha=0} \\
& =\lim _{\alpha \rightarrow 0} \frac{\left(f\left(x_{0}+\alpha \beta u\right)-f\left(x_{0}\right)\right) \beta}{\alpha \beta} \\
& =\ell_{\gamma \rightarrow 0} \frac{f\left(x_{0}+\gamma u\right)^{\gamma}-f\left(x_{0}\right)}{\gamma} \beta \\
\Rightarrow D[\beta u] f\left(x_{0}\right) & =\beta D[u] f\left(x_{0}\right)^{2}
\end{aligned}
$$

Directional Derivative is linear in the direction variable

$$
\begin{aligned}
\Longrightarrow & D[\beta u] f\left(x_{0}\right)=\beta D[u] f\left(x_{0}\right) \\
& \text { for differentiable functions } \\
& D[u+v] f\left(x_{0}\right)=D[u] f\left(x_{0}\right)+D[v] f\left(x_{0}\right)
\end{aligned}
$$

\Rightarrow For \quad differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ $D[u] f\left(x_{0}\right)=\left.D[u] f\right|_{x=x_{0}}$ is linear in \vec{u}.

The Gradient Vector
\Rightarrow For function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ $D[u] f\left(x_{0}\right)=\left.D[u] f\right|_{x=x_{0}}$ is linear in \vec{u}. u $D[u] f\left(x_{0}\right)=m^{\top} u=\nabla^{\top} u=\nabla\left(x_{0}\right)^{\top} u$ $\left.D[\cdot] f\right|_{x_{0}}: \mathbb{R}^{n} \rightarrow \mathbb{R} \in \mathbb{R}^{n} \quad m \in \mathbb{R}^{n} \quad \rightarrow$ gradient vector

The Gradient Vector and Partial Derivatives

$$
D[u] f\left(x_{0}\right)=\nabla^{\top} u=\langle\nabla, u\rangle \quad \begin{array}{ll}
\nabla \in \mathbb{R}^{n} \\
& x_{0} \in \mathbb{R}^{n} \\
u \in \mathbb{R}^{n}
\end{array}
$$

The Gradient Vector and Partial Derivatives

How to derive the gradient?

How to calculate ∇
dol do $\partial=1$-find $\partial f / \partial x_{1} \frac{\partial f}{\partial x_{2}}-\frac{\partial f}{\partial x_{n}}$ 2 -arrange in a vector

$$
\nabla=\left[\begin{array}{c}
\partial f / \partial x_{1} \\
\partial f / \partial x_{2} \\
\vdots \\
\partial f / \partial x_{n}
\end{array}\right]
$$

Example: Least Squares
Least squares

$$
\begin{aligned}
& x^{*}=\operatorname{argmin}\|A x-b\|^{2} \quad x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b \\
& A=\left[\begin{array}{lll}
c_{1} c_{2} & \cdots & c_{n}
\end{array}\right]=\left[\begin{array}{c}
r_{1}^{\top} \\
r_{2}^{\top} \\
\vdots \\
r_{m}^{\top}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & -a_{1 n} \\
a_{m 1} & a_{m 2} & -a_{m n}
\end{array}\right] \\
& x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1 \\
x_{n}
\end{array}\right] \quad\|A x-b\|^{2}=\left\|\left[\begin{array}{c}
r_{1}^{\top} \\
r_{2}^{\top} \\
r_{m}^{\top}
\end{array}\right] x-\left[\begin{array}{c}
b_{1} \\
b_{2} \\
1 \\
b_{m}
\end{array}\right]\right\|^{2} \\
&=\left\|\left[\begin{array}{c}
r_{1}^{\top} x-b_{1} \\
r_{2}^{\top} x-b_{2} \\
1 \\
r_{m}^{\top} x-b_{m}
\end{array}\right]\right\|^{2}=\sum_{i=1}^{m}\left(r_{1}^{\top} x-b_{i i}\right)^{2}=f(x) \\
&=\sum_{i=1}^{m}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2}
\end{aligned}
$$

Example: Least Squares

$$
\begin{aligned}
& \begin{aligned}
&=\left\|\left[\begin{array}{c}
r_{1}^{\top} x-b_{1} \\
r_{2}^{\top} x-b_{2} \\
1 \\
r_{m}^{\top} x-b_{m}
\end{array}\right]\right\|^{2}=\sum_{i=1}^{m}\left(r_{1}^{\top} x-b_{i}\right)^{2}=f(x) \\
&=\sum_{i=1}^{m}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2} \\
& \begin{aligned}
\frac{\partial f}{\partial r_{k}} & =\sum_{i=1}^{m} 2 \quad a_{i k} \quad\left(r_{i}^{\top} x-b\right) \\
& =2 \sum_{i=1}^{m} a_{i k}\left(\begin{array}{rl}
\left.r_{i}^{\top} x-b\right)
\end{array}\right. \\
& =2\left[\begin{array}{ll}
a_{1 k} & a_{2 k} \cdots \\
a_{m k}
\end{array}\right]\left[\begin{array}{c}
r_{1}^{\top} x-b \\
r_{2}^{\top} x-b \\
\vdots \\
r_{m}^{\top} x-b
\end{array}\right] \\
& =2 c_{k}^{\top}\left(\left[\begin{array}{c}
r_{1}^{\top} \\
r_{2}^{\top} \\
r_{m}^{\top}
\end{array}\right] x-b\right)
\end{aligned} \\
& \frac{\partial f}{\partial x_{k}}=2 c_{k}^{\top}(A x-b)
\end{aligned}
\end{aligned}
$$

Example: Least Squares

$$
\left.\begin{array}{rl}
\frac{\partial f}{\partial x_{k}} & =2 C_{k}^{\top}(A x-b) \\
\nabla=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f / n_{2}}{\prime} \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right] & =2\left[\begin{array}{c}
C_{1}^{\top}(A x-b) \\
C_{2}^{\top}(A x-b) \\
\vdots \\
C_{n}^{\top}(A x-b)
\end{array}\right]=2 \underbrace{\left[\begin{array}{c}
C_{1}^{\top} \\
C_{2}^{\top} \\
C_{n}^{\top}
\end{array}\right]}_{A^{\top}}=2 A^{\top}(A x-b)=2 A(A x-b)
\end{array}\right]
$$

Example: Least Squares

$$
\begin{aligned}
& f(x)=\|A x-b\|^{2} \\
& A \in \mathbb{R}^{m \times n} \\
& x^{*}=\underset{x}{\operatorname{argmin}} f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{f}(x)=\overrightarrow{0} \Rightarrow 2 A^{\top}(A x-b)=0 \\
& \Rightarrow A^{\top} A x-A^{\top} b=0 \\
& \Rightarrow A^{\top} A x=A^{\top} b \Rightarrow x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b
\end{aligned}
$$

Derive Gradient: Second Method
1-calculate the diretional derivative

$$
D[u] f\left(x_{0}\right)=\left.\frac{d}{d \alpha} f(x+\alpha u)\right|_{\alpha=0}=g(x, u)
$$

2- Write $D[u] f$ in the form of $\nabla^{\top} u$

$$
\begin{aligned}
& f(x)=\|A x-b\|^{2}=(A x-b)^{\top}(A x-b) \quad\langle\nabla, u\rangle \\
& D[u] f(x)=\left.\frac{d}{d \alpha} f(x+\alpha u)\right|_{\alpha=0}=\frac{d}{d \alpha}(A(x+\alpha u)-b)^{\top} \\
&=\left.\frac{d}{d \alpha}(A(\vec{x}+\alpha \vec{u})-b)^{\top}(A(\vec{x}+\alpha \vec{u})-b)\right|_{\alpha=0} \\
&=(A u)^{\top}(A(x+\alpha u)-b)+\left.(A(x+\alpha u)-b)^{\top} A u\right|_{\alpha=0} \\
& \alpha=0=(A u)^{\top}(A x-b)+(A x-b)^{\top} A u \\
& \Rightarrow \nabla=2 A^{\top}(A x-b)=2(A x-b)^{\top} A u=\left\langle 2 A^{\top}(A x-b), u\right\rangle
\end{aligned}
$$

Derive Gradient: Second Method

$$
\begin{aligned}
D[u] f(x) & =2(A x-b)^{\top} A u=\left(2 A^{\top}(A x-b)\right)^{\top} u \\
& =\langle\nabla, u\rangle=\nabla^{\top} u \\
& \Rightarrow \nabla=2 A^{\top}(A x-b)
\end{aligned}
$$

Final Project

Spectral Clusteng

