Linear Algebra for Computer Science

 Lecture 3Span, Independence, Basis, Coordinates

Linear combination

Let $a, b \in R$. The vector $a x+b y$ is a linear combination of the vectors x and y.

Let $a_{i} \in R$. The vector $a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n}$ is a linear combination of the vectors $x_{1}, x_{2}, \ldots, x_{n}$.

Span

$\operatorname{span}(x, y)=\{a x+b y \mid a, b \in R\}$

The space of all linear combinations of x and y.

$$
\operatorname{span}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n} \mid a_{i} \in R\right\}
$$

Span

We say that $x_{1}, x_{2}, \ldots ., x_{n}$ span S if $S=\operatorname{span}\left(x_{1}, x_{2}, \ldots ., x_{n}\right)$.

Linear dependence

x, y, z are dependent if

- $x \in \operatorname{span}(y, z)$, OR
- $y \in \operatorname{span}(z, x), O R$
- $z \in \operatorname{span}(x, y)$
that is
- $x=a y+b z$, for some $a, b, O R$
- $y=a z+b x$, for some $a, b, O R$
- $z=a x+b y$, for some a, b.

Linear dependence

$x_{1}, x_{2}, \ldots, x_{n} \in V$ are linearly dependent if one of them can be written as a linear combination of the others (one of them is in the span of the others).

Linear independence

x, y, z are independent if

- $x \notin \operatorname{span}(y, z)$, AND
- $y \notin \operatorname{span}(z, x)$, AND
- $z \notin \operatorname{span}(x, y)$

Linear independence

$x_{1}, x_{2}, \ldots, x_{n} \in V$ are linearly independent if none of them can be written as a linear combination of the others.

Linear independence

$x_{1}, x_{2}, \ldots, x_{n} \in V$ are linearly independent if none of them can be written as a linear combination of the others.

Equivalently:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n}=0 \Rightarrow a_{1}=a_{2}=\ldots .=a_{n}=0
$$

Basis

$\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$ such that

- $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent
- $v_{1}, v_{2}, \ldots, v_{n}$ span V

Basis

$\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$ such that

- $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent
- $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ span V
* n is the same for any choice of the basis vectors
* n is called the dimension of V
* There are also infinite dimensional vector spaces

* Basis (general definition)

$\left\{\mathrm{v}_{\mathrm{i}}\right\}_{\mathrm{i} \in \mathrm{I}} \subseteq \mathrm{V}$ such that

- v_{i} 's are linearly independent
- for any $v \in V$ there is a finite set of vectors $v_{1}, v_{2}, \ldots, v_{d} \in\left\{v_{i}\right\}_{i \in \mathrm{I}}$ such that $\mathbf{v} \in \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, v_{d}\right)$
* Any vector space has a basis
* cardinality of $\left\{v_{i}\right\}_{i \in I}$ is the same for any choice of the basis vectors
* cardinality of $\left\{v_{i}\right\}_{i \in I}$ is called the dimension of V

Bases and Coordinate Representation

Why is independence needed? => uniqueness
every $x \in \mathrm{~V}$ can be written uniquely as a linear combination of the basis vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$.

Bases and Coordinate Representation
\Rightarrow Every $n \in V$ can be written as a unique linear. combination of u_{1}, \ldots, u_{n}.

$$
x=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{k} u_{n}
$$

$\Rightarrow x$ can be represented as

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\\
a_{n}
\end{array}\right]
$$

as an array of read numbers.

$$
x=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n}
\end{array}\right]
$$

$a_{i}-5$ are called coordinates of n
-heirs.

$$
-1 \approx=1,(010,1)<=\text { Leis }
$$

Example: The Euclidean space

