Linear Algebra for Computer Science

Lecture 3

Span, Independence, Basis, Coordinates

Linear combination

Let $a,b \in R$. The vector $a \times + b \ y$ is a linear combination of the vectors x and y.

Let $a_i \in R$. The vector $a_1 x_1 + a_2 x_2 + \dots + a_n x_n$ is a linear combination of the vectors x_1, x_2, \dots, x_n .

$$span(x,y) = \{a x + b y | a, b \in R\}$$

The space of all linear combinations of x and y.

$$span(x_{1}, x_{2}, ..., x_{n}) = \{a_{1} x_{1} + a_{2} x_{2} + ..., + a_{n} x_{n} \mid a_{i} \in \mathbb{R} \}$$

K. N. 1008 University of Technology

We say that
$$x_1, x_2, ..., x_n$$
 span S if S = span($x_1, x_2, ..., x_n$).

Linear dependence

x,y,z are dependent if

- $x \in span(y,z)$, OR
- $y \in span(z,x)$, OR
- $z \in span(x,y)$

that is

- x = a y + b z, for some a, b, OR
- y = a z + b x, for some a,b, OR
- z = a x + b y, for some a,b.

Linear dependence

 $x_1, x_2, ..., x_n \in V$ are **linearly dependent** if one of them can be written as a linear combination of the others (one of them is in the span of the others).

Linear independence

x,y,z are independent if

- $x \notin span(y,z)$, AND
- $y \notin span(z,x)$, AND
- $z \notin span(x,y)$

Linear independence

$x_1, x_2, \dots, x_n \in V$ are **linearly independent** if none of them can be written as a linear combination of the others.

Linear independence

$x_1, x_2, \dots, x_n \in V$ are **linearly independent** if none of them can be written as a linear combination of the others.

Equivalently:

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 \implies a_1 = a_2 = \dots = a_n = 0$$

Basis

$v_1, v_2, ..., v_n \in V$ such that

- v₁, v₂, ..., v_n are linearly independent
- v₁, v₂, ..., v_n span V

Basis

- $v_1, v_2, ..., v_n \in V$ such that
 - v₁, v₂, ..., v_n are linearly independent
 - $v_1, v_2, ..., v_n \text{span } V$
- * n is the same for any choice of the basis vectors
- $\boldsymbol{*}$ n is called the dimension of V
- * There are also infinite dimensional vector spaces

* Basis (general definition)

 $\{v_i\}_{i \in I} \subseteq V$ such that

- v_i's are linearly independent
- for any $v \in V$ there is a **finite** set of vectors $v_1, v_2, ..., v_d \in \{v_i\}_{i \in I}$ such that $v \in \text{span}(v_1, v_2, ..., v_d)$
- * Any vector space has a basis
- * cardinality of $\{v_i\}_{i \in I}$ is the same for any choice of the basis vectors
- * cardinality of $\{v_i\}_{i \in I}$ is called the dimension of V

Bases and Coordinate Representation

Why is independence needed? => uniqueness

every $x \in V$ can be written **uniquely** as a linear combination of the basis vectors $v_1, v_2, ..., v_n$.

Bases and Coordinate Representation

=> Every nev can be written as a unique linear combination of u, , ... , un. n= a, u, + a2 u2 + ... + an un rail can be represented as az az a. 02 dn/ an array of m = as numbers 03 an ai-s are colled coordinates of n - horas منعات به بردارمای بای واست است .

Example: The Euclidean space

