Linear Algebra for Computer Science

Lecture 5

Matrices \& Linear Transformations

Review: column space, row space

Matrices form a vector space?
the set of $m \times n$ matrices $\mathbb{R}^{m \times n}$ with real entries $(\sim \Omega)$ form a vector space

$$
\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6}
\end{array}\right]+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4} \\
b_{5} & b_{6}
\end{array}\right]=\left[\begin{array}{ll}
a_{1}+b_{1} & a_{4}+b_{4} \\
a_{3}+b_{3} & a_{4}+b_{2} \\
a_{5}+b_{5} & a_{6}+b_{5}
\end{array}\right]
$$

*

©
element-wise

Shape models

Shape models

Functions

- Also mappings, Transformations,
- What is a function?
functions / maps / tranformations

$$
f: X \rightarrow Y
$$

$$
\operatorname{Domain}(f)=X
$$

$$
\operatorname{codomain}(f)=Y
$$

$$
\operatorname{Range}(f)=\{f(x) \mid x \in X\}
$$

Functions
functions / maps / tranformations
$f: X \rightarrow Y$.
$\operatorname{Domain}(f)=X$
$\operatorname{codomain}(f)=r$
$\operatorname{Rarge}(f)=\{f(x) \mid x \in X\}$
f: one-to-one (injective) $f(x)=f(y) \Rightarrow x=y$
f : onto (surjective) Range $(f)=Y$

$$
\text { जe } \quad \forall y \in Y \quad \exists x \in X: f(x)=y
$$

f: one-to-one \& onto (bijective)

Functions
f: one-to-one \& onto (bijective)

$$
\Rightarrow
$$

Inrertible siveres
bijective $\exists g$ such that $g(f(x))=x \quad \forall x \in X$

$$
\begin{gathered}
\exists g Y \rightarrow X \\
g=f^{-1}
\end{gathered}
$$

$$
f(g(y))=y \quad \forall y \in Y
$$

Functions in linear algebra

- Here, we are interested in functions from a vector space V to a vector space U

$$
(f: U \rightarrow V)
$$

Linear Transformations

Linear Transformations

Linear Transformations
A linear map $f: V \rightarrow U$

1. $f(u+v)=f(u)+f(v) \quad \forall u, v \in V$
2. $f(\alpha u)=\alpha f(u) \quad \forall u \in V, \alpha \in \mathbb{R}$ \mathbb{C}

$$
\begin{array}{cc}
1,2 \Leftrightarrow f(\alpha \underline{u}+\beta v)=\alpha f(u)+\beta f(v) & \forall u, v \in V \\
f(\alpha u)+f(\alpha v) & \forall \alpha, \beta \in \mathbb{R}
\end{array}
$$

A lineap map preserves linear combinations

Linear Transformations

$$
\begin{aligned}
& f(u+v)=f(u)+f(v) \\
& f(a u)=a f(u)
\end{aligned}
$$

does not matter if linear combination applied before or after transformation.

Linear Maps and Basis Vectors

Linear Maps and Standard Basis Vectors

$$
\left.\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\underset{\hat{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]}{\substack{\mathbb{R}^{2}}} \begin{array}{l}
3 \\
2
\end{array}\right)=3\binom{1}{0}+2\binom{0}{1}
$$

Linear Maps and Standard Basis Vectors

$$
\begin{array}{lc}
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} & x f\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+y f\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f(x, y) & x\binom{-1}{2}+y\binom{4}{3} \\
=x\binom{-1}{2}+y\binom{4}{3} & f\left(\left[\begin{array}{ll}
x & y
\end{array}\right]\right)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
4 & 3
\end{array}\right]
\end{array}
$$

Matrix Multiplication => linear map

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \text { Every } f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \text { in the form } \\
& f(x)=A x \quad \text { of } f(x)=A x \text { for } A \in \mathbb{R}^{n \times m} \\
& A \in \mathbb{R}^{n \times n \times m} \quad \text { is linear. } \\
& f(\alpha x+\beta y)=A(\alpha x+\beta y) \\
& A(\alpha x)+\beta A(\beta y)=\alpha A x+\beta A y=\alpha f(x)+\beta f(y)
\end{aligned}
$$

linear map => matrix representation
Pf if $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear the f can be
linear map => matrix representation
if $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear the f can be

$$
\begin{aligned}
& \begin{array}{l}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right] \in \mathbb{R}^{m} \quad \begin{array}{l}
\text { represented as } f(x)=A x \\
\text { for some } A \in \mathbb{R}^{n \times m}
\end{array} \text { (จ) } \\
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
x_{1}
\end{array}\right]}
\end{array} \\
& f(x)=f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left[f\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
x_{m} \\
\vdots \\
0
\end{array}\right]\right) \quad f\left(\begin{array}{l}
n \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right) \ldots f\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{m}
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& e_{1}=\left[\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \cdots \quad e_{m}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\dot{x}_{m}
\end{array}\right]=x_{1} \underline{e}_{1}+x_{2} \underline{\underline{e_{2}}}+\cdots+x_{m} \underline{e_{m}}
\end{aligned}
$$

linear map <=> matrix representation

https://amosunov.wordpress.com/2021/06/22/linear-algebra-memes/

General finite dimensional vector spaces
Let V be a vector space with finite no. of basis rectors $b_{1}, b_{2}, \ldots, b_{n}$ (V is finite $V=\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right)$ in $b_{1}, b_{2}, \ldots, b_{n} . \quad$ dimensional $)$
f:

$$
v=\underline{v}_{1} b_{1}+v_{2} b_{2}+\cdots+v_{n} b_{n}
$$

$$
\because: U \quad \text { basis }(U)=b_{1}^{\prime} \quad b_{2}^{\prime}-b_{m}^{\prime}
$$

$$
f\left(b_{1}\right)=\left[\begin{array}{c}
a_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right]=u_{1} b_{1}^{\prime} u_{2} b_{2}^{\prime} \cdots \cdots b_{(m)}^{\prime}
$$

