Linear Algebra for Computer Science

 Lecture 7
Matrix Multiplication

ATER YOUIARINYOUMUST

MUITPTYEHEH ROWBYEMOH GOLUWN IU A MATHIK

Matrix Multiplication

Dot Product

Inner product, dot product, scalar product np. inner(u, v)
complex numbers?
$\frac{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ z\end{array}\right]=a x+b y+c z+d \cdot t}{v}$

Dot Product as matrix product

$$
a=\underbrace{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]}_{3 \times 1} \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad a^{\top} b=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\langle a, b\rangle
$$

Inner Product

OIEDOESWOT SIWFTV

UNDERSTAND THE DOTRRBOLUET

Inner Product

$$
\begin{aligned}
& \langle u+w, v\rangle=\langle u, v\rangle+\langle w, v\rangle \\
& \left\langle\left[\begin{array}{c}
u_{1}+w, \\
u_{2}+w,
\end{array}\right],\left[\begin{array}{c}
v_{2} \\
v_{2}
\end{array}\right]\right\rangle= \\
& \langle\alpha u, v\rangle=\alpha\langle u, v\rangle \\
& \langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle \\
& \langle u, \alpha\rangle=a\langle u, v\rangle \\
& \langle u, v\rangle=f(u, v) \\
& \langle u(u+w, v)=f(u, v)+f(w, v) \\
& \langle f(\alpha u, v)=\alpha f(u, v)
\end{aligned}
$$

Inner Product

$$
\begin{aligned}
& f(x, y)=f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=x y \text {. } \\
& f\left(\alpha\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f((\alpha x))=(\alpha x)(\alpha y)=\alpha^{2} x y \\
& {\left[\begin{array}{l}
y \\
-v
\end{array}\right] \quad f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
z \\
v t
\end{array}\right]\right)=(x+z)(y+t) \neq x y+z t} \\
& f(u, v)=f\left(\left[\begin{array}{l}
u \\
v \\
v
\end{array}\right)\right)=f\left(\left[\begin{array}{c}
\alpha u \\
v
\end{array}\right]\right)=\alpha f\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right) \\
& f\left(\left[\begin{array}{c}
u+w \\
v
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)+f\left(\left[\begin{array}{l}
w \\
v
\end{array}\right]\right) \\
& f(\text { n, } y) \text { is linear in } x \text { is linear in } y\} \text { bilinear } \\
& \text { is not linear in }\binom{x}{y} \text {. }
\end{aligned}
$$

General vector spaces: Inner product space
$\mathbb{D}\left\{\begin{array}{l}\langle\alpha u, v\rangle=\alpha\langle u, v\rangle \\ \langle u+v, w\rangle=\langle u, w\rangle+\langle u v, w\rangle\end{array}\right.$
(II) $\langle u, v\rangle=\langle v, u\rangle$
(11) $\left\{\begin{array}{rl}\langle u, u\rangle\rangle 0 & u \neq 0 \\ \langle u, u\rangle=0 & u=0\end{array}\right.$

$$
\begin{aligned}
& \langle 0, u\rangle=\langle a v-v, u\rangle \\
& f(u, v) v \times v \rightarrow \mathbb{R}
\end{aligned}
$$

Matrix Multiplication in terms of inner products

Matrix multiplications in terms of matrix-vector product

Transforming a bunch of points data points as columns of a matrix

Transforming a bunch of points data points as rows of a matrix

be careful about linear transformations on row vectors!

$$
\begin{aligned}
& R\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y
\end{array}\right] \\
& \left.R\left[\begin{array}{l}
x_{1} \\
y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
y_{2}
\end{array}\right]\right]
\end{aligned}
$$

be careful about linear transformations on row vectors!

$$
\begin{aligned}
& W^{\top}\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots \\
x_{n} & y_{n}
\end{array}\right] R^{\top}=\left[\begin{array}{cc}
n_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots \\
x_{n} & y_{n}
\end{array}\right]\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& R\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \left.R\left[\begin{array}{l}
x_{1} \\
y_{4}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right]\right]
\end{aligned}
$$

Outer Product

np.outer(u,v)
u @ v.T
How many independent columns?
How many independent rows?
$\operatorname{outer}(u, v)=\operatorname{outer}(v, u) . T$
complex numbers?

Outer Product

$$
\begin{aligned}
& \text { Outer product } \\
& \text { Outer product } \\
& u=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad v=\left[\begin{array}{c}
x \\
y \\
z \\
t
\end{array}\right] \\
& a \in \mathbb{R}^{B}: \quad v \in \mathbb{R}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& W \in \mathbb{R}^{3 \times 4} \\
& W=u \otimes V
\end{aligned}
$$

Outer Product

$$
\begin{aligned}
& \text { - " }
\end{aligned}
$$

Inner product vs outer product
inner product $u^{\top} v \in \mathbb{R}$

$$
\begin{gathered}
u, v \in \mathbb{R}^{n \times 1} \\
u \cdot v=\langle u, v\rangle=u^{T} v
\end{gathered}
$$

outer product $u v^{\top} \in \mathbb{R}^{m \times n}$

$$
\begin{gathered}
u \in \mathbb{R}^{m \times 1} v \in \mathbb{R}^{n \times 1} \\
u \otimes v=u v T_{i}
\end{gathered}
$$

Two ways of looking at matrix product

Matrix Multiplication in terms of outer products

$$
\begin{aligned}
& \quad\left[\begin{array}{ll}
a & b \\
c & d \\
e & d
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right]=\left[\begin{array}{ll}
a x+b & a y+b t \\
c x+d z & c y+d t \\
e x+f z & e y+f t
\end{array}\right] \\
& {\left[\begin{array}{ll}
a x & a y \\
c x & c y \\
e x & e y
\end{array}\right]+\left[\begin{array}{ll}
b z & b t \\
d z & d t \\
f z & f t
\end{array}\right] \otimes} \\
& = \\
& {\left[\begin{array}{l}
a \\
c \\
e
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]+\left[\begin{array}{l}
b \\
d \\
f
\end{array}\right]\left[\begin{array}{ll}
z & t
\end{array}\right]} \\
& = \\
& =\left[\begin{array}{l}
a \\
c \\
e
\end{array}\right] \otimes\left[\begin{array}{l}
n \\
y
\end{array}\right]+\left[\begin{array}{l}
b \\
d \\
f
\end{array}\right] \otimes\left[\begin{array}{l}
z \\
t
\end{array}\right]
\end{aligned}
$$

Matrix Multiplication in terms of outer products

Example

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & c & f \\
g & h & 1
\end{array}\right]=\frac{\left[\begin{array}{lll}
1 \\
4
\end{array}\right]\left[\begin{array}{lll}
a & b & c
\end{array}\right]}{2 \times 3}+\left[\begin{array}{l}
2 \\
5
\end{array}\right]\left[\begin{array}{lll}
d & e f
\end{array}\right]} \\
& \left.+\left[\begin{array}{l}
3 \\
6
\end{array}\right] \underset{2 x^{3}}{\left[g^{3}\right.} \mathrm{hi}\right]
\end{aligned}
$$

Block-wise multlipication

$$
\left.\underset{m \times n}{A \mid B}=\underset{m \times p}{n}=\underset{m \times n_{1}}{A_{1}} \begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
n_{2}=n \\
n_{1}+n_{2}=n
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]_{n_{2} \times p}^{n_{1} \times p}=A_{1} B_{1}+A_{2} B_{2}
$$

Block-wise multlipication

$$
A B=\left[\begin{array}{l}
n_{1} \\
A_{1} \\
A_{2}
\end{array}\right] B=\left[\begin{array}{cc}
A_{1} & B \\
A_{2} & B
\end{array}\right]
$$

Block-wise multlipication

$$
\begin{aligned}
& m_{2}\left\{\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]\right\} n_{1}^{n_{1}} \\
& =\left[\begin{array}{lll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
\end{aligned}
$$

