Linear Algebra for Computer Science

 Lecture 8
Matrix Rank, Linear Equations

Review: Matrix Multiplication

Review: Outer Product

$$
\left.\begin{array}{l}
\vec{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] \quad \vec{a} \otimes \vec{b}=\vec{a} \vec{b}^{\top}=\left[\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{1} b_{4} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{2} b_{4} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3} \\
a_{3} & b_{4}
\end{array}\right] \\
a \otimes b
\end{array}\right]=a b^{\top}=\left[\begin{array}{l}
b_{1} \vec{a}\left(b_{2} \vec{a} \quad b_{3} \vec{a}\right. \\
b_{4} \vec{a}
\end{array}\right]=\left[\begin{array}{c}
a_{1} b^{\top} \\
a_{2} b^{\top} \\
a_{3} b^{\top}
\end{array}\right]
$$

(at most) 1 independent column

Review: Outer Product

$$
\begin{aligned}
& A=\underset{m \times n}{\left[a_{i j}\right]} \quad B=\underset{n \times p}{\left[b_{i j}\right]} \quad C=\underset{m \times p}{\left[c_{i j}\right]} \\
& a_{k j}=c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} \\
& =\sum_{k=1}^{n} a_{i k} b_{k j} \\
& c^{1}, c^{2}, \ldots, c^{n} \in \mathbb{R}^{m \times p} \\
& c=c^{\prime}+c^{2}+\cdots+c^{n}=\sum_{k=1}^{n} c^{1} \\
& C_{i j}^{\prime}=a_{i 1} b_{i j} \quad C_{i j}^{k}=a_{i k} b_{k j} \\
& C^{\prime}=a_{1} b_{1}^{\top} \quad c_{1 j}^{k}=a_{k} b_{k}^{\top} \\
& {\left[\begin{array}{ccc}
a_{1} & a_{2} & \cdots \\
& a_{n} \\
A
\end{array}\right]\left[\begin{array}{c}
b_{1}^{\top} \\
b_{2}^{\top} \\
\vdots \\
b_{n}^{\top} \\
B
\end{array}\right]}
\end{aligned}
$$

Column Rank

Column Rank

$$
\left[\begin{array}{lll}
1 & 4 & 3 \\
2 & 5 & 3 \\
3 & 6 & 3
\end{array}\right]
$$

Column Rank $=2$

Column Rank and Row Rank

$$
\begin{array}{ll}
{\left[\begin{array}{rr}
1 & -2 \\
2 & -4 \\
3 & -6 \\
4 & -8
\end{array}\right]} & \text { column rank }=1 \\
{\left[\begin{array}{lll}
1 & 0 & 4 \\
2 & 0 & 5 \\
3 & 0 & 6
\end{array}\right]} & \text { row rank }=1 \\
= & \text { row rank rank }=2
\end{array}
$$

Column Rank and Row Rank

$$
\begin{array}{ll}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} & \text { column rank }=3 \\
\text { row rank }=3 \\
{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} & \text { colum rank }=0 \\
\text { row rank }=0
\end{array}
$$

Column Rank and Row Rank

$\operatorname{RowRank}\left(a b^{\top}\right)=\operatorname{ColumnRank}\left(a b^{\top}\right) \leq 1$

Column Rank and Row Rank

Column Rank and Row Rank

$$
\begin{aligned}
& L=[]^{3 \times 2} \\
& 2 \times 4 \text { RRow Rank=Col RaxE } \\
& {\left[\because c_{1} c_{2}: c_{n}\right]} \\
& \text { for } i=1 \ldots n \\
& \text { if } c_{i} \notin \operatorname{span}\left(c_{1},, c_{i-1}\right) \\
& \text { L.append }\left(C_{i}\right)
\end{aligned}
$$

Column Rank and Row Rank

Column Rank = Row Rank

Column Rank and Row Rank

"Most" matrices have full rank
$\left.3\left[\begin{array}{lll}a \\ b & d & (\\ e \\ c\end{array}\right]\left[\begin{array}{l}g \\ h \\ i\end{array}\right]\right]$
A

if A is a random 3×3 matrix (uniform distribution) non degenerate normal distribute.

$$
\operatorname{rank}(A)=3
$$

with probability =1
almost Always
thin and fat matrices

full-rank and rank-deficient

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \quad \begin{array}{l}
\operatorname{rank}(A) \leqslant \min (m, n) \\
\operatorname{rank}(A)=\min (m, n) \\
\operatorname{full}(A)<\operatorname{rank}
\end{array} \\
& A \text { is full-rank }(m, n) \\
& \text { rank-deficient } \\
& A \text { has full }
\end{aligned}
$$

full-rank and rank-deficient

$$
A \in \mathbb{R}^{m \times n}\left\{\begin{array}{cc}
\operatorname{rank}(A) \leqslant \min (m, n) \\
\operatorname{rank}(A)=\min (m, n) & \text { full-rank }(A)<\min (m, n) \\
\text { rank-deficient }
\end{array}\right.
$$

A is full-rank
A has fulli rank

$$
\begin{array}{lll}
A \in \mathbb{R}^{n \times n} & \operatorname{rank}(A)=n & \text { full-rank } \\
& \operatorname{rank}(A)<n & \operatorname{rank}-\text { deficient }
\end{array}
$$

Linear Equations
Linear Equations

$$
\begin{aligned}
& \begin{array}{r}
3 \\
\text { equations } \\
\text {, le }
\end{array}\left\{\begin{array}{r|r}
x+z=4 & 1 x+0 y+1 z=4 \\
x-y=3 & 1 x+(-1) y+0 z=3 \\
x+y+z=2 & 1 x+1 y+1 z=2
\end{array}\right. \\
& 3 \text { unknowns } x, y, z \\
& \text { كت } \\
& m \text { equations } \\
& {\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right]} \\
& n \text { unknown } \\
& A \vec{x}=\vec{b}
\end{aligned}
$$

Independent Equations

$$
\begin{gathered}
\begin{array}{lc}
E_{q 1} & 2 x+y+2 z=6 \\
E_{q} & x-y=3
\end{array} \quad\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & -1 & 0 \\
1 & 2 & 2
\end{array}\right]
\end{gathered}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Geometric Interpretation
$A \underline{x}=b$
$A \in \mathbb{R}^{3 \times 3}$

$$
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \quad A x=b
$$

Let's focus on a special case

m equation
n unknowns

Special case $\left\{\begin{array}{l}m=n \Rightarrow A \text { square }\binom{n \text { Eypations }}{n \text { Vnlknoms }} \\ A \text { has full rank }\end{array}\right.$

$$
\equiv\left\{\begin{array}{l}
A \in \mathbb{R}^{n \times n} \\
\operatorname{rank}(A)=n
\end{array}\right.
$$

