## Linear Algebra for Computer Science

Lecture 9
Solving Linear Equations, Inverse Matrix

## Linear Equations - Geometric Interpretation

$$
\begin{gathered}
A \quad \vec{x}=b \\
{\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 1 & 1 \\
-1 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
z \\
-1
\end{array}\right] \cdot x+\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] y+\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] z=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]} \\
\hat{H}^{2} A \\
A \vec{x}=b
\end{gathered}
$$

Review: Linear Equations: special case


Singular and Nonsingular Matrices
$A \in \mathbb{R}^{n \times n}$ square
$A$ has full rank, non singular $\operatorname{ran} k(A)=n$, nondegenrate Invertible sty, gen

Nonsingular Matrices and Linear Transformations

$$
A \in \mathbb{R}^{n \times n} \text { square }
$$

A has fall rank, nonsingular

$$
\operatorname{van} k(A)=r, \text { nondegen rate }
$$

Fnvertible stits, $\begin{gathered}\text { one-toone } \\ \text { injective } \\ =0\end{gathered}$

$$
\begin{aligned}
& f(\vec{x})=A \vec{x} \quad A \in \mathbb{R}^{n \times n} \quad \text { onto sarjiediecter } \\
& f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \text { find } x \text { s.t. } f(x)=b \quad x=y \leqslant x-y=0 \Leftarrow d=0 \\
& f(x)=f(y) \Rightarrow A x=A y \Rightarrow A(x-y)=0 \\
& A d=0 \Rightarrow\left[a_{1},\left(a_{F} \ldots\left(a_{n}\right]\left[\begin{array}{l}
d_{n} \\
d_{2} \\
d_{n} \\
d_{n}
\end{array}\right]=d_{1}\left(a_{1}\right)+d_{2} a_{2} a_{2}+\cdots+d_{n} a_{n}\right)=0 \Rightarrow \begin{array}{l}
d_{1}=0 \\
d_{2}=0 \\
d_{n}=0
\end{array}\right.
\end{aligned}
$$

Nonsingular Matrices and Linear Transformations

$$
\begin{aligned}
& f: R^{n} \rightarrow \mathbb{R}^{n} \\
& y \in \mathbb{R}^{n} \quad \exists x^{?} f(x)=y \\
& A x \stackrel{8}{=} y
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \exists x \in \mathbb{P ^ { n }} \Rightarrow A x=f(x)=y \\
& f=\boldsymbol{x}
\end{aligned}
$$

Nonsingular Matrices and Linear Transformations
$f$ is one-to-one and onto $\Rightarrow$ $\exists f^{-1} \quad f^{-1}(f(x))=x$ for all $x \in \mathbb{R}^{n}$

$f$ is linear and bijective

$$
f(x)=A x
$$

$f^{-1}$ is and /I

Nonsingular Matrices and the Inverse Map

$$
\begin{gathered}
f \text { is linear and bijective } f(x)=A x \\
f^{-1} \text { is } \quad \text { and } / \prime \\
f^{-1}\left(\alpha y_{1}+\beta y_{2}\right) \quad \begin{array}{l}
x_{1} \doteq f^{-1}\left(y_{1}\right) \Rightarrow y_{1}=A x_{1} \\
x_{2}=f^{-1}\left(y_{2}\right) \Rightarrow y_{2}=A x_{2} \\
=f^{-1}\left(\alpha A x_{1}+\beta A x_{2}\right)=f^{-1}\left(A\left(\alpha x_{1}+\beta x_{2}\right)\right)=f^{-1}\left(f\left(\alpha x_{1}+\beta x_{2}\right)\right) \\
=\alpha x_{1}+\beta x_{2} \Rightarrow f^{-1}\left(\alpha y_{1}+\beta y_{2}\right)=\alpha f^{-1}(y)+\beta f^{-1}(y) \quad f^{-1} \text { in } \\
\text { linear }
\end{array}
\end{gathered}
$$

The Inverse Matrix

里 ${ }^{-1}$ is linear
$f^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear $\Rightarrow B \Rightarrow f^{-1}(y)=B y$ $\forall y \in \mathbb{R}^{n}$

$$
B=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots b_{n}
\end{array}\right]
$$

The Inverse Matrix

$$
\begin{aligned}
f^{-1}(f(x))= & B(A x)=x \Rightarrow(B A) x=x \\
& (A B) C=A(B C) \quad \forall x \\
\Rightarrow & (B A)\left[\begin{array}{lll}
1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{ll}
I A=A \\
A I=A
\end{array} \\
& (B A) I=I \Rightarrow B A=I
\end{aligned}
$$

The Inverse Matrix
$f(x)=A x 7$

$$
(B A) I=I \Rightarrow B A=I
$$

$f^{-1}(x)=B x\{B$ is called the inverse of $A$ and is dented by $\left.A^{-1}\right\} \Rightarrow$ matrix has an

$$
\begin{aligned}
& \text { Inverse } \\
& A^{-1} A=I \quad A A^{-1}=I \quad \exists^{\prime} \forall x A A^{-1} x=\| x \\
& \left.A^{-1}\right)^{-1}=A \\
& \left\{\begin{array}{l}
A^{-1} A=I \Rightarrow A A^{-1}=I \Rightarrow B A A^{-1}=B \Rightarrow \\
B A=I \Rightarrow
\end{array}\right.
\end{aligned}
$$

## Practice: Examples of Inverse

Rotation
Reflection
Shear
Scale

Solve linear equations using Inverse Matrix

$$
\begin{aligned}
& A x=y \Rightarrow \begin{array}{l}
\text { find } A^{-1} \\
\text { How? }
\end{array} \Rightarrow A^{-1} A x=A^{-1} y \\
& \text { np.linalg.inv(A) }
\end{aligned}
$$

Solve linear equations using Inverse Matrix

$$
\begin{gathered}
A x=y \Rightarrow x=A^{-1} y \\
\checkmark \quad ? \\
A \dot{X}^{\prime}=Y^{r} \Rightarrow X=A^{-1} Y \\
n \times n \\
A\left[x_{1} x_{2} \cdots x_{p}\right]=\left[y_{1} y_{2} \cdots y_{p}\right]
\end{gathered}
$$

Null vectors of nonsingular matrices

$$
[A]=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]
$$

$A$ is nonsingular $x_{1} a_{1}+x_{2} a_{2}+x_{n} a_{n}=0$

$$
\begin{aligned}
& \Rightarrow x_{1}=x_{2} \ldots=x_{n}=0 \\
{\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] } & =0 \Rightarrow\left[\begin{array}{c}
x_{1} \\
n_{2} \\
\vdots \\
n_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
\end{aligned}
$$

$A$ is nonsingular $A x=0 \Rightarrow x=0$

Null vectors of singular matrices
$A$ is singular $\exists x \neq 0$ s.t. $A x=0$ null vector $\Rightarrow A$ has at least one nonzero null vector valor.

Singular Matrices and linear equations
$\in \mathbb{R}^{n \times n}$
$A$ is singular $=$ rank deficient

$$
A x=b
$$

$$
\left.A^{-1} a_{1}^{\left[a_{1}\right.} a_{2} \cdots a_{n}\right]_{x}^{1} x \in(A)
$$

$$
\begin{aligned}
& \left.\left[\left(a_{1}\right) a_{2}\right) \cdots a_{n}\right]\left[\begin{array}{c}
n_{x_{1}} \\
x_{2} \\
x_{n}
\end{array}\right]=b \Rightarrow b=x_{1}\left(a_{1}\right)+x_{2}\left(a_{2}+\cdots+x_{n} a_{n}\right] \\
& \operatorname{dim}\left(\operatorname{span}\left(A_{1}>a_{n}\right)\right)<n \\
& \text { column space } \\
& A^{-1} A x=\frac{x}{2} \forall x
\end{aligned}
$$

Singular Matrices don'† have an inverse
$A$ is ronsingular $A x=0 \Rightarrow x=0$
$A$ is singulador $\exists x \neq 0$ s.t. $A x=0$ null vector
$\Rightarrow A$ has at least one nonzero null vector.
$A$ is singular $\quad A^{-1} A x=x$
Let $x+0)$ e a null vector of $A$

$$
A^{-\top} A x=x \Rightarrow A^{-1} 0=x \Rightarrow x=0
$$

Elimination

$$
\begin{aligned}
& \begin{array}{l}
\text { Eq1 }\left\{\begin{array}{l}
x+y=7 \\
E q^{2} \\
E q^{2}-2 x-y=51 \Rightarrow 0 \cdot x-3 y=-9
\end{array} \quad x+1\right.
\end{array} \\
& {\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
5
\end{array}\right] \Rightarrow\left[\begin{array}{rr}
1 & 1 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
-9
\end{array}\right]}
\end{aligned}
$$

Intro to Elimination

$$
\begin{aligned}
& \text { Eql }\{x+y=7 \quad x+y=7 \Rightarrow x=4 \\
& E q^{2} \frac{\mid 2 x-y=5}{E q^{2}-2 E q \mid \Rightarrow 0 \cdot x-3 y}=-9 \\
& {\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
5
\end{array}\right] \Rightarrow\left[\begin{array}{rr}
1 & 1 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
-9
\end{array}\right]}
\end{aligned}
$$

Upper Triangular Matrices


بالا
Upper Triangular.

$$
A x=b
$$



Shan
Lower Trisingular

$$
\begin{aligned}
& 4 t=d \Rightarrow t=\frac{t}{4} \\
& 3 z+7 t=c \Rightarrow z=y \\
& 2 y+6 z+t=b \Rightarrow y=V \\
& x+5 y+8 z+10 t \Rightarrow x=V
\end{aligned}
$$

