Linear Algebra for Computer Science

Lecture 11
LU decomposition

Review: Solving multiple equations

Review: Find inverse matrix by elimination

$$
\begin{aligned}
& A \times n=I \\
& A\left[x_{1} X_{2} x_{3}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& {[A \mid I]=\left[\begin{array}{lll}
A & 1 & 0 \\
0 & 1 & 0 \\
\downarrow & \text { Goes jordan }
\end{array}\right]} \\
& {[I \mid Y] \Rightarrow I X=Y} \\
& {\left[\begin{array}{l}
I \\
X=Y
\end{array}\right]=A^{-1}}
\end{aligned}
$$

Solve equations directly or using inverse matrix?

Solve multiple equations directly or using inverse matrix?

When should we use the Inverse matrix?

$$
\begin{aligned}
& A\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \cdots & x_{n}
\end{array}\right]=\left[\begin{array}{llll}
b_{1} & \underbrace{b_{2}} \cdots b_{n}
\end{array}\right] \\
& A x_{i}=b_{i} \\
& \begin{array}{l}
A=\checkmark \\
\text { for } \frac{A^{-1}=}{\text { get } b_{i} \text { one-by-one }}
\end{array} \\
& \text { (eg. from camera } \\
& \text { microphone } \\
& \text { sensor } \\
& x_{i}=A^{-1} b_{i}-
\end{aligned}
$$

Elimination: Computation Complexity

Inverse of multiplication

$$
\begin{aligned}
& (A B)^{-1} \\
& A B X=I \\
& (A B)\left(B^{-1} A^{-1}\right) \\
& =A\left(B B^{-1}\right) A^{-1} \\
& =A I A^{-1} \\
& =A A^{-1}=I \\
& (A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

Inverse of transpose

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} A^{\top} \in \mathbb{R}^{n \times m_{i}^{i}}-A_{i j}^{\top}=A_{j i} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]^{\top}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \quad(A B)^{\top}=B^{\top} A^{\top}} \\
& \left(A^{\top}\right)^{\top}
\end{aligned}
$$

Inverse of diagonal matrices

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]^{-1}=?} \\
& {\left[\begin{array}{lll}
1 / a & 0 & 0 \\
0 & 1 / b & 0 \\
0 & 0 & 1 / c
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Multiplying by diagonal matrices

Inverse of Upper/Lower Triangular Matrices

$$
\left.\left[\begin{array}{lll}
a & 0 & 0 \\
d & b & 0 \\
f & e & c
\end{array}\right]=\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
u & 1 & 0 \\
v & w & 1
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\right)=\left[\begin{array}{lll}
1 / a & & \\
& 1 & 1 / 2 \\
& & 1 / c
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
u & 1 & 0 \\
w & w & 1
\end{array}\right]^{-1}\right]
$$

Inverse of Upper/Lower Triangular Matrices

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
\frac{2}{3} & 1 & 0 \\
3 & 4 & 7
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
5 & -4 & 1
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
3-8+x & =0
\end{aligned}
$$

- Matrix Decomposition

$$
\begin{aligned}
& A=L+\underline{U} \text { lor-rank decomposition }
\end{aligned}
$$

Low-Rank matrix decomposition (factorization)

$$
\begin{aligned}
& {\left[\begin{array}{l}
A \\
A
\end{array}\right]=[B]_{6}\left[\begin{array}{l}
10^{6} \times 100 \\
100 \times 10^{6}
\end{array}\right.} \\
& A=10^{6} \times 10^{60^{10} \times 100} 10^{12} \text { single precision } \\
& \operatorname{rank}(A)=100 \\
& \text { A: } \begin{aligned}
H \times 10^{12} \Rightarrow 4000 G B \\
4 T
\end{aligned} \\
& =A x: \frac{10^{12} \text { operations }}{} \quad B, C: 800 \mathrm{MB} \\
& A x=(B C) x=B(C x)=\underset{10^{8}}{B}\left(\frac{10^{8}}{\left(x \mathbb{R}^{6} \times 100\right.}\right) \\
& =\frac{\sum_{10^{6}}^{B y} \times 100 \quad=1 \mathbb{R}^{100}}{}=\underline{2 \times 10^{8}} \\
& 10^{12} \times 10^{-9}=1000 \\
& 2 \times 10^{8} * 10^{-9}=0.55
\end{aligned}
$$

LU decomposition -2×2 matrices

LU decomposition - Existence

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
x & 0 \\
2 & y
\end{array}\right]\left[\begin{array}{ll}
u & v \\
0 & w
\end{array}\right]=\left[\begin{array}{cc}
x u & ? \\
? & ?
\end{array}\right]} \\
& \operatorname{rank}=2 \Rightarrow x u=0\left[\begin{array}{l}
x=0 \\
o r \\
u=0
\end{array} \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & b \\
c & d
\end{array}\right] s L U\right. \\
& P A=L V
\end{aligned}
$$

LU decomposition

$$
\left.\begin{array}{r}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -7 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
E_{32}
\end{array} \begin{array}{ccc}
E_{31} & 2 & 3 \\
3 & 1 & -1 \\
2 & -3 & 1
\end{array}\right]=\begin{array}{cc}
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -10 \\
0 & 0 & 9
\end{array}\right]} \\
U \\
A & =\left(E_{32} E_{31} E_{21}\right)^{-1} U=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U
\end{array}
$$

LU decomposition

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & -1 \\
2 & -3 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 7 / 5 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -10 \\
0 & 0 & 9
\end{array}\right]} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & L_{0} & 0 \\
0 & 1 & 0 \\
2 & 7 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
\sqrt[3]{3} & 1 & 0 \\
2 & 7 / 5 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -10 \\
0 & 0 & 9
\end{array}\right] \\
& A=L U
\end{aligned}
$$

LU decomposition - Existence

$$
\begin{aligned}
& A=L U \\
& P A=L V
\end{aligned}\left[\begin{array}{l}
0 \\
\end{array}\right]=\left[\begin{array}{llll}
a & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
b \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solving linear equations using LU decompotion

$A x=b$
$A=L U$
$L U x=y$

- Let $z=U x$
- solve $L z=y$ for z

