Linear Algebra for Computer Science

Lecture 12
General LU decomposition, Null Space
basic LU decomposition my not exist!

$$
\begin{aligned}
& L U \\
& E A_{n \times n}=\left[U U=\left[\begin{array}{ll}
\text { elia } \\
j
\end{array}\right]\right. \\
& {\left[\begin{array}{lll}
0 & 3 & 7 \\
1 & 4 & 8 \\
2 & 5 & 16
\end{array}\right]=\left[\begin{array}{lll}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{array}\right]\left[\begin{array}{lll}
g & h & i \\
0 & j & k \\
0 & 0 & \\
0 & 0 & l
\end{array}\right] }
\end{aligned}
$$

Row exchange - permutation matrix

$$
\begin{array}{r}
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{llc}
0 & 3 & 7 \\
1 & 4 & 8 \\
2 & 5 & 16
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 4 & -8 \\
0 & 3 & 7 \\
2 & 5 & 6
\end{array}\right]}
\end{array}
$$

Permutation matrices

Permutation matrices
there are n ! permutation matrices of dimentsion $n \times n$.

$$
\left.P=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \begin{array}{ll}
r 3 \rightarrow 1 \\
& r 1 \rightarrow 2 \\
r^{2} \rightarrow 3
\end{array} \right\rvert\, P^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=P^{\top}
$$

for permutation matrices we have $P^{-1}=P^{T}$.
P is an orthogonal matrix

$$
\therefore P^{\top} P=P P^{\top}=I
$$

LU Decomposition - general form

General $L U$ decomposition of $A \in I R^{n \times n}$

$$
P A=L U
$$

permutation matrix

LDU decomposition
LDU decomposition

$$
\left.\left.\begin{array}{c}
A=\frac{\left[\begin{array}{lll}
3 & 0 & 0 \\
24 & 2 & 0 \\
12 & 8 & 4
\end{array}\right]}{\left[\begin{array}{lll}
1 & 0 & 0 \\
8 & 1 & 0 \\
4 & 4 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]}\left[\begin{array}{lll}
2 & 4 & 6 \\
0 & 1 / 2 & 7 \\
0 & 0 & 5
\end{array}\right]
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 14 \\
0 & 0 & 1
\end{array}\right]\right]
$$

pivot and floating point arithmetic

$$
\left[\begin{array}{lll}
10^{-7} & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

floating point

Back to linear equations

$$
A x=b
$$

A is square \& non-singular

What about the singular or non-square case?

General Linear Equations

A not of full-rank
A not square

Does $\mathrm{A} x=\mathrm{b}$ have a solution?

Null space
A

$$
\begin{array}{lll}
\text { column space } & C(A) & (\text { range } A) \\
\text { row space } & R(A) \\
\text { null space } & N(A) & (\text { kernel } A)
\end{array}
$$

$$
\begin{aligned}
& f(x) \text { range }(f)=\{f(x) \mid x \in X\} \quad f(x)=A x \\
& f: X \rightarrow Y
\end{aligned}
$$

$\operatorname{kernel}(f)=\{x \in X \mid f(x)=0\}$

$$
N(A)=\{x \mid A x=0\} \quad \text { sigh }
$$

null space: $A \in \mathbb{R}^{m \times n}$

Null space is a linear subspace

$$
N(A)=\{x \mid A x=0\}
$$

null space. $A \in \mathbb{R}^{m \times n}$

$$
\begin{aligned}
& y, x \in N(A) \Rightarrow \alpha x \stackrel{\ell}{\in} N(A) \\
& x+y \in N(A) \\
& A(\alpha x)= \alpha A x=\alpha: 0=0 \Rightarrow \alpha x \in N(A) \\
& A(x+y)=A x+A y=0+0=0 \Rightarrow x+y \in N(A)
\end{aligned}
$$

$\Rightarrow N(A)$ is a linear is ubspace (of $\left.\mathbb{R}^{n}\right)$

$$
A x=0
$$

$$
A x=0 \quad 0 \in N(A) \quad a H
$$

Ax $N(A)$ inciter all answers to $A x=0$

Computing the null space

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 5 & 6 \\
2 & 6 & 8 \\
3 & 7 & 10 \\
4 & 8 & 12
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=0} \\
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \in N(A)} \\
& {\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \in N(A)} \\
& M(A)=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \left\lvert\,\left[\begin{array}{l}
1 \\
2 \\
3 \\
y
\end{array}\right] x+\left[\begin{array}{c}
5 \\
6 \\
7 \\
8
\end{array}\right] y+\left[\begin{array}{c}
6 \\
8 \\
10 \\
12
\end{array}\right] z=0\right.\right\} \\
& {\left[\begin{array}{c}
\alpha \\
\alpha \\
-\alpha
\end{array}\right] \in N(A) \quad \alpha\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2-
\end{array}\right] \in N(A)}
\end{aligned}
$$

Computing the null space

Elimination does not change the null space

for any invertible E we have $A x=0 \Leftrightarrow E A x=0$

Find null space by elimination - row echelon form

$$
\begin{aligned}
& \begin{array}{c}
{\left[\begin{array}{ccc}
1 & 5 & 6 \\
2 & 6 & 8 \\
3 & 7 & 10 \\
4 & 8 & 12
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 5 & 6 \\
0 & -4 & -4 \\
0 & -8 & -8 \\
0 & -12 & -12
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 5 & 6 \\
0 & -4 & -4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { row echelon }} \\
\text { form }
\end{array} \\
& D A x=b \quad, A x=0 \\
& E A x=E b \quad E A x=0 \\
& F \text { invertible } \\
& {\left[\begin{array}{ccc}
0 & 5 & 6 \\
0 & -4 & -4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
z_{2} \\
z_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Find null space by elimination - row echelon form

$$
\begin{aligned}
& \text { Pivots }\left[\begin{array}{ccc}
11 & 5 & 6 \\
0 & -4 & -4 \\
\hline 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
5 \\
-4
\end{array}\right]+\left[\begin{array}{c}
6 \\
-4
\end{array}\right] \underset{\text { fre raviable }}{\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \Rightarrow\left[\begin{array}{c}
x+5 y \\
-4 y
\end{array}\right]=\left[\begin{array}{c}
-62 \\
4 z
\end{array}\right]} \\
& -4 Y=4 Z \Rightarrow Y=-2 \\
& X+5 Y=-6 z \Rightarrow X-5 z=-6 z \Rightarrow X=-z \\
& \text { Null space: }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-z \\
-z \\
z
\end{array}\right]=\alpha\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=N(A)
\end{aligned}
$$

