Linear Algebra for Computer Science

Lecture 16

Projection into a linear subspace

Overdetermined equations and noise

Orthogonality

$$
\begin{aligned}
& \langle u, v\rangle=u^{\top} v=v^{\top} u=\sum_{i=1}^{n} u_{i} \cdot v_{i} \\
& u_{9} v \in \mathbb{R}^{h} \\
& \|u\|=\sqrt{\langle u, u\rangle}=\sqrt{\sum u_{i}^{2}} \\
& u \perp v \Leftrightarrow u^{\top} v=0
\end{aligned}
$$

Projection into a linear space - 1D case

$$
\begin{aligned}
& \vec{p}=x \vec{a} \quad x \in \mathbb{R} \text { ocular } \quad[\vec{a}] n=[b] \\
& \langle a, b-p\rangle=0 \Rightarrow p_{a}^{T}(b-p)=0
\end{aligned}
$$

$$
\begin{aligned}
& a^{\top} b-a^{\top} p=0 \Rightarrow a^{\top} b=a^{\top} p=x a^{\top} a \Rightarrow x=\frac{a^{\top} b}{a^{\top} a}=\frac{a^{\top} b}{\|a\|^{2}} \\
& p=x \vec{a}=\left(\frac{a^{\top} b}{a^{\top} a}\right) a \\
& \in \mathbb{R}
\end{aligned}
$$

Matrix multlipicaltion of a vector and a scalar
$T_{\alpha} \vec{V}$, vector

$$
\alpha \in \mathbb{R} \quad V \in \mathbb{R}^{n}
$$

11117
$\alpha \vec{V}=\vec{V} \alpha \rightarrow$ compatible with
$1 \times 1 \quad V_{n \times 1}=\underbrace{}_{1 \times 1} \quad$ matrix multiplication

$$
\begin{aligned}
\alpha & =u^{\top} v \in \mathbb{R} \\
\alpha & =u^{T} A \vee \mathbb{R}
\end{aligned}
$$

$$
\left(u^{\top} V\right) V \neq u_{n \times 1}^{\top} V^{\top} V
$$

$$
=v\left(u^{\top} v\right)=\underbrace{v u_{n \times 1}^{\top} V^{n \times 1}}_{\underbrace{}_{n \times n}}
$$

$$
\begin{aligned}
\alpha V=\left(u^{\top} v\right) v & =v\left(u^{\top} v\right)
\end{aligned}=\left(v u^{\top}\right) v .
$$

Projection is a linear operation

$p=f(b) \quad f:$ projection on subspace spanned by \vec{a}
is f linear? $f(\alpha b) \stackrel{?}{=} \alpha f(b)$

$$
\begin{aligned}
& f(b)=p=x a=\underbrace{\left(\frac{a^{+} b}{a+a}\right) a}_{f(b)}
\end{aligned}
$$

The projection matrix

$$
\begin{aligned}
& f(b)=p=x a=\left(\frac{a^{\top} b}{a^{\top} a}\right) a=a^{\prime}\left(\frac{a^{\top} b}{a^{\top} a}\right)=\frac{1}{a^{\top} a} a\left(a^{\top} b\right)^{\prime} \\
& \text { compatible }
\end{aligned}
$$

$$
\begin{aligned}
& f(b)=P_{a} b \\
& \text { projection } \\
& \text { matrix }
\end{aligned}
$$

The projection operation

projection
matrix

$$
P_{a}=\frac{a a^{\top}}{a^{\top} d}=\frac{a a^{\top}}{\|a\|^{2}}
$$

$$
f_{a}(b)=P_{a} b=\frac{a a^{T}}{a^{T} a} b
$$

$$
f_{2 a}(b)^{\prime}=f_{k a}(b)=f_{a}(b)
$$

$$
\begin{aligned}
& \vec{b}=\alpha \vec{a} \\
& \rightarrow b a
\end{aligned}
$$

$$
f_{a}(2 b)=2 f_{a}(b)
$$

$$
\Rightarrow f_{a}(b)=P_{a} b=b
$$

$$
\begin{aligned}
& T_{a}(b)=\frac{a a^{\top}}{a_{a} a}=\frac{a a^{\top}}{\|a\|^{2}}=\left(\frac{a}{\|a\|}\right)^{\frac{\bar{a}}{a}}\left(\frac{a}{\|a\|}\right)^{\top}
\end{aligned}
$$

$$
\bar{a}=\frac{a}{\|a\|}=\frac{a}{\sqrt{a^{+} a}} \quad \begin{gathered}
\|\bar{a}\|=1 \\
\bar{a} \text { is a unit }
\end{gathered} \quad P_{a}=\bar{a}_{\bar{a}}^{T_{a}} \bar{a}^{\top}
$$

\bar{a} is a unit vector

Properties of the projection matrix

$$
\begin{aligned}
& \xrightarrow[b]{\rightarrow} \\
& P_{a}=\frac{a a^{\top}}{a^{\top} a}=\frac{a a^{\top}}{\|a\|^{2}}=\left(\frac{a}{\|a\|}\right)^{\frac{\bar{a}}{a}}\left(\frac{a}{\|a\|}\right)^{\top} \\
& \bar{a}=\frac{a}{\|a\|}=\frac{a}{\sqrt{a^{+} a}} \quad \begin{array}{c}
\|\bar{a}\|=1 \\
\bar{a} \text { is a unit } \\
\overbrace{\bar{a}}^{\sigma_{a}}=\bar{a}_{a} \bar{a}^{\top} \\
P_{a}
\end{array} \\
& P_{a}^{\top}=\frac{a a^{\top}}{\left.\|a\|^{2}\right)}=\frac{1}{\|a\|^{2}}\left(a a^{\top}\right)^{\top}=\frac{a a^{\top}}{\|a\|^{2}}=P_{a} \quad \text { symmetric } \\
& P_{a} \underbrace{P_{a} b}_{=\alpha \vec{a}}=P_{a} b \quad \forall b \Rightarrow P_{a} P_{a}=P_{a}
\end{aligned}
$$

Properties of the Projection Matrix

$$
\begin{aligned}
& f_{a}(b)=f_{a}\left(f_{a}(b)\right) \quad \text { idem } \\
& P_{a}=P_{a} P_{a} \\
& \text { projection matrix }\left\{\begin{array}{l}
P \quad P=P \\
P^{\top}=P
\end{array}\right.
\end{aligned}
$$

idempotent

Rank of the 1-D projection matrix

$$
\begin{aligned}
& C\left(P_{a}\right)=C\left(\frac{a^{\top} a^{\top}}{\|a\|^{2}}\right)=C(a)=\{\alpha \vec{a} \mid \alpha \in R\} \\
& \xrightarrow[\longrightarrow]{a} \frac{a a^{T}}{\|a\|^{2}}=\frac{\int N R X[a]\left[a_{1} a_{2} \cdots a_{n}\right]}{\|a\|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{RanK}(p)=1=\operatorname{dim}(S)
\end{aligned}
$$

Length of the projected vector

General Projection into a linear subspace

projection map (is linear)
$(b-A x) \perp C(A)$

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \\
& A x=b
\end{aligned}
$$

A has full column rank (independent columns)

$$
A=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array} \cdot a_{n}\right]
$$

$$
C(A)=\operatorname{span}\left(a_{1}-a_{n}\right)
$$

$$
=\left\{A x \mid x \in \mathbb{R}^{n}\right\}
$$

$$
\subseteq \mathbb{R}^{m}
$$

$(b-A x) \perp y$ for all $y \in C(A)$
for all $y=A z=\left[a_{1}\left(a_{2}\right) \cdots\left(a_{n}\right)\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ \vdots \\ z_{n}\end{array}\right]$

General Projection into a linear subspace

$$
\begin{aligned}
& \text { (bAx) } \perp y \text { for all } y \in C(A) \\
& \begin{aligned}
& \text { for all } y=A z= \\
\Rightarrow\langle b-A x, A z\rangle=0 \quad \forall z \in \mathbb{R}^{n} & =z_{1} a_{1}+a_{2}, a_{2} a_{2}+\ldots, a_{n}+\ldots\left[\begin{array}{c}
z_{n} a_{n} \\
z_{n}
\end{array}\right]
\end{aligned} \\
& B(A z)^{\top}(a b-A x)=0 \quad \forall z \\
& z^{\top} A^{\top}(b-A x)=0 \\
& \forall z \in \mathbb{R}^{n} \quad z^{\top}=\frac{1}{1} \mathbb{S}^{1000} 0.0 \\
& A^{\top}(b-A x)=0 \\
& {[A][x]=[b]} \\
& \Rightarrow A^{\top}(b-A x)=0 \Rightarrow A^{\top} b=A^{\top} A x \\
& (\underbrace{A^{\top} A}_{n \times n}) x=\underbrace{A^{\top} b}_{n \times 1} \\
& {\underset{n \times m}{ } A^{\top} \underset{m \times n}{A} \underset{n \times 1}{x}=A_{n \times m}^{\top} b_{m \times 1}, ~}_{m} \\
& {\left[A^{\top}\right][A][x]=\left[A^{\top}\right][b]} \\
& \Rightarrow x=\left(A^{+} A\right)^{-1} A^{\top} b
\end{aligned}
$$

