Linear Algebra for Computer Science

Lecture 17
Projections

Projection and Least Squares Solution

Projection and Least Squares Solution

$$
\begin{aligned}
& x=\left(A^{\top} A\right)^{-1} A^{\top} V \\
& \left.\left[A^{\top}\right] \mid A\right]=[] \\
& A \\
& \left.\exists x \quad A^{\top} A x=0 \Longrightarrow \begin{array}{c}
A x \in C(A) \\
A x \in N\left(A^{\top}\right)
\end{array}\right\} \underset{C(A)+N\left(A^{\top}\right)}{\longrightarrow}=0 \\
& \begin{aligned}
x^{\top} A^{\top} A x=x^{\top} 0=0 \Rightarrow \frac{(A x)^{\top}}{y}\left(\frac{A x}{x}\right)=y^{\top} y & \Rightarrow 0 \\
& \Rightarrow y=0
\end{aligned} \\
& \Rightarrow A x=0 \Rightarrow x=0 \\
& \Rightarrow A^{\top} A \text { is non-singular }
\end{aligned}
$$

General Projection Matrix

$$
x=\left(A^{\top} A\right)^{-1} A^{\top} v
$$

least a squares solution

$$
p=f_{s}(v)=f_{A}(v)=A x=\underbrace{A\left(A^{\top} A\right)^{-1} A^{\top} V}
$$

$$
\begin{aligned}
f_{A}(v)=P_{A} v \in \mathbb{R}^{m} \quad P_{A}= & A(\underbrace{}_{m \times n} \underbrace{\left.A^{\top} A\right)^{-1}}_{n \times n} A^{\top} \\
n \times m & \text { projection } \\
& {\left[\begin{array}{l}
\text { matrix } \\
\cdot
\end{array}\right]\left[\left(A^{\top} A\right)^{\top}\right][n \times m] }
\end{aligned}
$$

The Special 1D Case

$$
\begin{aligned}
& \xrightarrow[m_{x}]{\text { La }} \underset{A}{ }=[a] \quad P_{A}=[a]_{|x|}^{\left[\left(a^{\top} a\right)^{-1}\right]}\left[a^{a^{\top}}\right] \\
& =\frac{a^{*} a^{\top}}{\left(a^{\top} a\right)}
\end{aligned}
$$

Properties of the Projection Matrix

$$
\begin{aligned}
\left(P_{A}\right)^{\top}=\left(A\left(A^{\top} A\right)^{-1} A^{\top}\right)^{\top} & =A^{\top}\left(a^{\top} a\right) \\
& \left.=A^{\top} A\right)^{-\top} A^{\top}\left(\left(A^{\top} A\right)^{\top}\right)^{-1} A^{\top} \\
& =A^{\top}\left(A^{\top} A\right)^{-1} A^{\top}=P_{A} \text { symètric }
\end{aligned}
$$

Properties of the Projection Matrix

$$
\begin{aligned}
P_{A} V & =A(\underbrace{}_{\left.y \in \mathbb{R}^{n} A\right)^{-1} A^{\top} V}
\end{aligned}
$$

$$
=A y \operatorname{cc}(A)=5
$$

$$
P_{A} P_{A V}=P_{A V} \quad f_{A}\left(f_{A}(\text { av })\right)=f_{A}(r)
$$

idempotent

$$
P_{A} P_{A}=A\left(A^{\top} A^{-}\right)^{-1} A^{\top} A\left(A^{\top} A^{-1} A^{\top}=A\left(A^{\top} A^{\top}\right)^{-1} A^{\top}=P_{A}\right.
$$

Properties of the Projection Matrix

$$
\begin{aligned}
& P_{A}=P_{A}^{+} \\
& P_{A} P_{A}=P_{A}
\end{aligned}
$$

Rank and Column Space of the Projection Matrix

$$
\begin{array}{cl}
P_{A}(A)=A \frac{(A A)^{\top} A^{\top}}{P B} & C\left(P_{A}\right) \subseteq C(A) \Rightarrow C\left(P_{A}\right)=C(A) \\
\operatorname{rank}\left(P_{A}\right)=n & C(A) \subseteq C\left(P_{A}\right)
\end{array}
$$

Dimensions of the Projection Matrix

Projection into the embedding space R^{m}

$$
\begin{aligned}
& \forall v \in \mathbb{R}^{m} \\
S=\mathbb{R}^{m} \Rightarrow P_{S}(v)=V & \\
\Rightarrow P_{A}=I & \\
& \\
A \in R^{m \times m} & \\
A: \text { invertible } \quad P_{A}=A\left(A^{\top} A\right)^{-1} A^{\top} & =A A^{-1} A^{-\top} A^{\top} \\
& =I \cdot I=I
\end{aligned}
$$

The orthonormal case

Let $a_{1} a_{2} \ldots a_{n}$ are a basis for s
$a_{1}, a_{2}, \ldots, a_{n}$ form an orthogonal basis for S if $a_{i}+a_{j}\left(a_{i}^{\top} a_{j}=0\right)$ foal $i \neq j$
$a_{1}, a_{2}, \ldots, a_{n}$ form an orthonormal basis for S

The orthonormal case

$a_{1} \cdots a_{n}$ are orthonormal

$$
A A^{\top} A=\left[\begin{array}{ll}
a_{1}^{\top} \\
a_{2}{ }^{\top} \\
A^{\top}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=a_{n}
$$

A has orthonormal columns

$$
P_{A}=A \cdot\left(A^{\top} A\right)^{-1} A^{\top}=A A^{\top}
$$

Orthogonal Matrix

A has orthonormal columens $\left(A^{\top} A=I\right)$ \& A is square
$\Rightarrow A \in \mathbb{R}^{n \times n}$ has or tho normal column

Change of basis
Change of Basis

$$
\begin{aligned}
x=\left[\begin{array}{l}
3 \\
2
\end{array}\right] & =3\left[\begin{array}{c}
1 \\
0
\end{array}\right]+2\left[\begin{array}{c}
0 \\
1
\end{array}\right] \\
& =3 \hat{i}+2 \hat{j} \\
& =3 e_{1}+2 e_{2}
\end{aligned}
$$

What is the coordinate of v in basis $\left(a_{1} ; a_{2}\right)$

Change of basis

$$
\begin{aligned}
& V=\binom{5}{1}=5 \times \hat{i}+1 \times \hat{j} \\
& V=? a_{1}+? a_{2}=x_{1} a_{1}+x_{2} a_{2}
\end{aligned}
$$

$\binom{x_{1}}{x_{2}}$ coordinate, of V in basis $\left(a_{1}, a_{2}\right)$
write everything $\left(\underline{v}, \underline{a_{1}}, \underline{a}_{2}\right)$ in standard basic

$$
\begin{aligned}
V & =\binom{5}{1} \quad a_{1}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \quad a_{2}=\left[\begin{array}{c}
2.5 \\
1.5
\end{array}\right] \\
x_{1} a_{1}+x_{2} a_{2} & =\left[V=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] x=V \quad\right. \text { solve linear } \\
A X^{\prime}=V & \text { equations }
\end{aligned}
$$

Change of basis
find coordinates of $v \in \mathbb{R}^{n}$ in basis

$$
\begin{gathered}
a_{1}, a_{2}, \ldots, a_{n} \\
{\left[\begin{array}{ccc}
a_{1} & a_{2} & \cdots a_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\begin{array}{rr}
& \begin{array}{l}
A x=V \\
\\
\end{array}
\end{array} \begin{array}{l}
-1 . V
\end{array}}
\end{gathered}
$$

Change of basis
what if $a_{1}, a_{2}, \ldots, a_{n}$ are orthonormal

$$
\begin{aligned}
& A^{-1}=A^{\top} \\
& \text { a } a_{i}^{\top} a_{i}=1 \\
& a_{i}^{\top} a_{j}=0 \quad i \neq j \\
& V=\left[\begin{array}{lll}
a_{1} & a_{2} & \cdots \\
a_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
n_{n}
\end{array}\right]=\frac{a_{i}^{\top} V}{\frac{1}{2}}=a_{i}^{\top}\left[\begin{array}{ccc}
a_{1} & a_{2} & \cdots a_{n} \\
i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
1 \\
x_{n}
\end{array}\right] \\
& x_{i}=a_{i}^{T} v
\end{aligned}
$$

Orthogonal Subspaces
$S_{1}, S_{2} \subseteq V$ are linear subspaces of V.
S_{1}, S_{2} are orthogonal if for all $V_{1} \in S_{1}$,$v_{2} \in S_{2} \quad v_{1}+v_{2}$

