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In this exploration, we exploit fundamental linear algebra principles to implement and
validate clustering algorithms, specifically focusing on K-means and Spectral Clustering.

For this project, you are permitted to use Python and the NumPy library. Usage of any
machine learning libraries is prohibited, unless we explicitly specify in the task description.
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1. Implementation of K-means Algorithm

In this task, your objective is to finalize the kmeans.py file, completing the implementation
of the K-means clustering algorithm.

def k_means_clustering(data, k, max_iterations=100):

# TODO: Randomly initialize centroids

# TODO: Iterate until convergence and update centroids

# TODO: Return labels and centroids

Where data is a m×n numpy array representing m data points each of dimension n, and k

denotes the desired number of clusters. There is an optional parameter max_iterations
that determines the maximum number of iterations. The function is expected to return an
m-dimensional vector of labels and a k×n array of centroids representing the cluster
centers.

🚨 Implementation note: You need to vectorize your code using concepts from the labs.
Avoid using loops for vector calculations; only use loops for the outermost iteration of the
algorithms, alternating between computing the centroid and assigning points to clusters.
Violating this incurs a 50% deduction from the related task score.

2. Clustering by Spectral Methods

This task involves using spectral clustering to utilize the data's similarity matrix spectrum
for dimensionality reduction before clustering by completing the spectral.py file.

2.1. Calculate Laplacian matrix

The initial step in spectral clustering involves computing the Laplacian matrix from the
affinity (similarity) matrix. We recommend using the symmetric normalized Laplacian,
which can be obtained through the following formula:

𝐿 = 𝐼 − 𝐷
− 1

2 𝐴𝐷
− 1

2

Where:
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● is the identity matrix,𝐼
● is the degree matrix, a diagonal matrix with  representing the sum of weights𝐷 𝐷

𝑖𝑖

for the -th row (or column) in the affinity matrix ,𝑖 𝐴
● is an m×m symmetric affinity matrix representing a pairwise measure of similarity𝐴

between m data points.

Complete the laplacian function to compute the Laplacian of the affinity matrix A.

def laplacian(A):

# TODO: Calculate degree matrix

# TODO: Calculate the inverse square root of the symmetric matrix

# TODO: Return symmetric normalized Laplacian matrix

2.2. Implement Spectral clustering

We will finalize the algorithm implementation by completing the spectral_clustering

function.

def spectral_clustering(affinity, k):

# TODO: Compute Laplacian matrix

# TODO: Compute the first k eigenvectors of the Laplacian matrix

# TODO: Apply K-means clustering on the selected eigenvectors

# TODO: Return cluster labels

Start by computing the graph Laplacian from the affinity matrix. Employ your laplacian
function for Laplacian calculation.

Form a data representation by concatenating eigenvectors corresponding to the k smallest
eigenvalues of graph Laplacian into columns of a matrix. Each row in this matrix serves as a
feature vector for data points. Then, apply the K-means to the obtained data representation.
You may use the linalg package from NumPy for eigenvalue decomposition.

It is imperative to utilize your self-implemented k_means_clustering algorithm for
k-means clustering. If facing challenges in the previous section, consider using the
sklearn.cluster.KMeans.
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3. Evaluate Your Clustering Algorithms!
Now, it's time to compare and test your clustering algorithms. However, before you start,
let's implement some prerequisites by writing some stuff in the validate.py file.

3.1. Construct the Affinity matrix

Spectral clustering requires an affinity matrix to function. Initially, we will create an affinity
matrix from our data by completing the construct_affinity_matrix function.
There are several methods available for constructing the affinity matrix, and in this context,
you are tasked with implementing the following methods.

● Gaussian Kernel (RBF Kernel): Define a similarity measure based on the Gaussian
(Radial Basis Function - RBF) kernel:

𝐴
𝑖𝑗

= 𝑒𝑥𝑝(−
||𝑥

𝑖
−𝑥

𝑗
||2

2σ2 )

where and  are data points, denotes the Euclidean distance, and is a𝑥
𝑖

𝑥
𝑗

||. || σ

bandwidth parameter controlling the width of the Gaussian.

● k-Nearest Neighbors (KNN): Connect each data point to its nearest neighbors.𝑘
The affinity matrix is binary, with if  is among the nearest neighbors of𝐴 𝐴

𝑖𝑗
= 1 𝑥

𝑗
𝑘

 , and otherwise. Make the matrix symmetric afterward.𝑥
𝑖

𝐴
𝑖𝑗

= 0

def construct_affinity_matrix(data, affinity_type, *, k=3, sigma=1.0):

# TODO: Compute pairwise distances

if affinity_type == 'knn':

# TODO: Find k nearest neighbors for each point

# TODO: Construct symmetric affinity matrix

# TODO: Return affinity matrix

elif affinity_type == 'rbf':

# TODO: Apply RBF kernel
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# TODO: Return affinity matrix

else:

raise Exception("invalid affinity matrix type")

3.2. Implement evaluation metrics

Congratulations! You are now ready to execute your clustering algorithms. Imagine running
these algorithms on the following incredibly straightforward dataset:

Feature vector Ground truth label

𝑝
1 0

𝑝
2 0

𝑝
3 1

What outcomes can be expected from clustering algorithms? Possible results include:

Feature vector Predicted label 1 Predicted label 2

𝑝
1 0 1

𝑝
2 0 1

𝑝
3 1 0

Observe that both predicted labels exhibit accurate clustering with 100% precision! Your
objective is to finalize the function clustering_score in the metrics.py file to quantify
the accuracy of algorithms, reflecting the ratio of correctly clustered points, while
addressing the described issue. You could employ simple techniques like brute-force and
greedy algorithms, or implement well-known metrics such as Normalized Mutual
Information (NMI) or Adjusted Rand Index (ARI) to receive extra credit.

def clustering_score(true_labels, predicted_labels):

# TODO: Calculate and return clustering score

https://en.wikipedia.org/wiki/Rand_index
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3.3. Compare & Visualize algorithms

Now, let's bring everything together and run the validate.py file.

Find three diverse toy datasets in the datasets directory. Your objective is to complete the
code, creating a 3×4 grid with 12 scatter plots. Rows depict different datasets, and columns
showcase the results of each algorithm alongside the ground truth labels. Keep in mind to
use different colors for separate clusters in each scatter plot.

if __name__ == "__main__":

datasets = ['blobs', 'circles', 'moons']

# TODO: Create and configure plot

for ds_name in datasets:

dataset = np.load("datasets/%s.npz" % ds_name)

X = dataset['data'] # feature points

y = dataset['target'] # ground truth labels

n = len(np.unique(y)) # number of clusters

k = 3

sigma = 1.0

y_km, _ = k_means_clustering(X, n)

Arbf = construct_affinity_matrix(X, 'rbf', sigma=sigma)

y_rbf = spectral_clustering(Arbf, n)

Aknn = construct_affinity_matrix(X, 'knn', k=k)

y_knn = spectral_clustering(Aknn, n)

print("K-means on %s:" % ds_name, clustering_score(y, y_km))

print("RBF affinity on %s:" % ds_name, clustering_score(y, y_rbf))

print("KNN affinity on %s:" % ds_name, clustering_score(y, y_knn))

# TODO: Create subplots

# TODO: Show subplots
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Besides visualization, you need to compare the accuracy of the algorithms.

Finally, you should end up with the following accuracy report:

K-means RBF + Spectral KNN + Spectral

Blobs

Circles

Moons

💡 Note: Explore different sigma and k values to find the suitable accuracy. Observe how
adjusting these values influences clustering results and why.

4. Cluster Non-Euclidean Data

A point cloud is a set of spatially defined points in space, often used to represent the shape
or features of physical objects.

The data set we will work on in this task is derived from the MNIST dataset. Each digit
image in the MNIST dataset is transformed into a point cloud by sampling 80 points from
its edge pixels.

We intend to employ spectral clustering to classify these digits by doing some challenges in
the mnist.py file.

Hold on! How could we measure the similarity between two point clouds?

https://en.wikipedia.org/wiki/MNIST_database
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4.1. Implement Chamfer distance

We'll leverage one of the most widely-used methods for calculating dissimilarity between
two point clouds: the Chamfer distance. This symmetric metric computes the average
distance from each point in one point cloud to the nearest point in the other point cloud:

𝐷(𝐴, 𝐵) = 1
|𝐴|

𝑎 ϵ 𝐴 
∑ 𝑚𝑖𝑛

𝑏 ϵ 𝐵
||𝑎 − 𝑏||2 + 1

|𝐵|
𝑏 ϵ 𝐵 

∑ 𝑚𝑖𝑛
𝑎 ϵ 𝐴

||𝑎 − 𝑏||2

Where:

● and are point clouds, m×n matrices representing coordinates of m data points𝐴 𝐵
in the n-dimensional space.

● represents the Chamfer distance between point sets and .𝐷(𝐴, 𝐵) 𝐴 𝐵
● ’s and ’s denote points in sets and , respectively.𝑎 𝑏 𝐴 𝐵
● The symbol represents the Euclidean distance between the pair of points||𝑎 − 𝑏||

and .𝑎 𝑏

def chamfer_distance(point_cloud1, point_cloud2):

# TODO: Calculate distances from each point in point_cloud1 to the
nearest point in point_cloud2

# TODO: Calculate distances from each point in point_cloud2 to the
nearest point in point_cloud1

# TODO: Return the Chamfer distance, sum of the average distances in
both directions

4.2. Register Point clouds

Consider the following pair of point clouds. Are they
similar or not? Is their Chamfer distance large or
small? What happens to the distance if we transform
and rotate the first or the second point cloud?

The process of finding a spatial transformation to
align two point clouds and optimize their distance is
called Registration.
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One of the most popular methods for point set registration is the Iterative Closest Point
(ICP) algorithm.

The ICP algorithm iteratively aligns two sets of points in space by establishing point
correspondences, calculating a rigid transformation, and applying it to minimize the
distance between corresponding points. The process repeats until convergence.

Let’s start by finding the rigid transformation between two sets of points.

def rigid_transform(A, B):

# TODO: Subtract centroids to center the point clouds A and B

# TODO: Construct Cross-Covariance matrix

# TODO: Apply SVD to the Cross-Covariance matrix

# TODO: Calculate the rotation matrix

# TODO: Calculate the translation vector

# TODO: Return rotation and translation matrices

The Cross-Covariance matrix ( ) captures the relationships between the𝐻 = 𝐴𝑇𝐵
corresponding points in the two sets. You may use the linalg package from NumPy for

SVD decomposition ( ). The rotation matrix could be obtained from the SVD𝐻 = 𝑈Σ𝑉𝑇

decomposition ( ) and the translation vector is the difference between centroid of𝑅 = 𝑉𝑈𝑇

point set B and the centroid of the point set A after rotation ( ).𝑡 = µ
𝐵

− 𝑅µ
𝐴

Now we can use the rigid transformation function to iteratively adjust the source point
cloud with the nearest neighbors in the target point cloud.

def icp(source, target, max_iterations=100, tolerance=1e-5):

# TODO: Iterate until convergence

# TODO: Find the nearest neighbors of target in the source

# TODO: Calculate rigid transformation

# TODO: Apply transformation to source points

https://en.wikipedia.org/wiki/Iterative_closest_point
https://en.wikipedia.org/wiki/Iterative_closest_point
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# TODO: Calculate Chamfer distance

# TODO: Check for convergence

# TODO: Return the transformed source

The algorithm iteratively identifies the nearest neighbors of the target points within the
source point set, computes a rigid transformation between the source and the closest
points, and then applies this transformation to the source. The iteration continues until the
change in error falls below a specified threshold or the maximum number of iterations is
reached.

4.3. Construct the Affinity matrix

Now you’re ready to construct your affinity matrix using the Chamfer distance. Finish the
implementation of the construct_affinity_matrix function to generate a symmetric
affinity matrix from a set of point clouds.

Keep in mind that the Chamfer distance measures dissimilarity between two point clouds
while the concept of affinity matrix is based on pairwise similarity between two data points.

Additionally, it's crucial to register the point clouds before distance measurement to ensure
optimal similarity.

def construct_affinity_matrix(point_clouds):

# TODO: Iterate over point clouds to fill affinity matrix

# TODO: For each pair of point clouds, register them with each other

# TODO: Calculate symmetric Chamfer distance between registered clouds

🚨 Implementation note: Your algorithms must have computational stability. Correctly
handle small distances and consider floating point errors.

4.4. Evaluate & Visualize results

In the last step, we will assemble our functions to cluster hand-written digits.
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The provided snippet loads the dataset from the datasets directory, constructs an affinity
matrix, and then calls the spectral clustering algorithm. The dataset includes only the digits
2, 5 and 9 from the MNIST dataset, and your goal is to cluster these digits.

Conclude your work by reporting the clustering results. Measure the clustering score, and
visualize the affinity matrix in 3D using the first 3 eigenvectors. Represent each cluster with
a distinct color for clear visualization.

if __name__ == "__main__":

dataset = "mnist"

dataset = np.load("datasets/%s.npz" % dataset)

X = dataset['data'] # feature points

y = dataset['target'] # ground truth labels

n = len(np.unique(y)) # number of clusters

Ach = construct_affinity_matrix(X)

y_pred = spectral_clustering(Ach, n)

print("Chamfer affinity on %s:" % dataset, clustering_score(y, y_pred))

# TODO: Plot Ach using its first 3 eigenvectors

5. Optional: Speed Up Your Code!

How much time did it take to cluster point clouds in your runtime environment?

Acceleration is a widely recognized strategy to enhance program speed. Numba, an
open-source JIT compiler, translates a subset of Python and NumPy code into efficient
machine code, contributing to improved performance.

In this task, your goal is to enhance the efficiency of your algorithms in the speedup.py file
and reevaluate the outcomes of Task 4 using the improved version.

https://github.com/numba/numba
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5.1. Rewrite the Algorithms

In this task you should use Numba to improve performance of your algorithms. However
it's important to note that Numba might not work well for all source codes. While we
recommend using vectorized operations in NumPy, Numba likes loops! Your objective is to
optimize the code for both performance and speed.

Rewrite your algorithms and functions to operate with Numba. Replace vectorized code
with loops. Avoid using object mode. Try to take advantage of parallelization features of
Numba such as fastmath, automatic parallelization and prange. Try to run your code on
GPU and utilizing CUDA features for further acceleration.

Scoring will be based on the efficiency of your code; higher scores will be awarded for
faster execution and the effective utilization of Numba's features.

# TODO: Rewrite the k_means_clustering function

# TODO: Rewrite the laplacian function

# TODO: Rewrite the spectral_clustering function

# TODO: Rewrite the clustering_score function

# TODO: Rewrite the chamfer_distance function

# TODO: Rewrite the rigid_transform function

# TODO: Rewrite the icp function

# TODO: Rewrite the construct_affinity_matrix function

5.2. Compare the results

Now, test your functions and reevaluate the clustering of the point cloud dataset using the
optimized versions with Numba. Finally, provide an evaluation of the effectiveness of
Numba and compare the running times between your original algorithms and the newly
enhanced versions written with Numba.

if __name__ == "__main__":

dataset = "mnist"

dataset = np.load("datasets/%s.npz" % dataset)
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X = dataset['data'] # feature points

y = dataset['target'] # ground truth labels

n = len(np.unique(y)) # number of clusters

# TODO: Run both the old and speed up version of your algorithms and
capture running time

print("Old Chamfer affinity on %s:" % dataset, clustering_score(y,
y_pred_old))

print("Chamfer affinity on %s:" % dataset, clustering_score(y, y_pred))

# TODO: Compare the running time using timeit module
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