
Linear Algebra for Computer Science - B. Nasihatkon
Fall 2024

Lab Instructions - session 7
Active Face Model, PCA

Introduction
In this lab, we will explore facial modeling techniques by capturing and processing
images of your face. You will begin by taking multiple front-view photos of your face
with varying expressions. These photos will be used to detect and map facial
landmarks, providing a foundation for further analysis and modeling.
For this section, you have the below code. You must complete the code and use the
functions in utils_main.py to save images and landmarks in OUTPUT_FOLDER:

o Note that the first image you take must be neutral and need to take at least 30 images.

Webcam_face.py
Constants

OUTPUT_FOLDER = "images_landmarks"

PREDICTOR_PATH = 'shape_predictor_68_face_landmarks.dat'

FRAME_SKIP_RATE = 2

Initialize Dlib's Face Detector and Predictor

detector = dlib.get_frontal_face_detector()

predictor = dlib.shape_predictor(PREDICTOR_PATH)

Webcam Initialization

vc = cv2.VideoCapture(0)

frame_count = 0

frame_number = 0

Video Capture and Processing Loop

while True:

rval, frame = vc.read()

frame_count += 1

Process every 3rd frame

if frame_count % FRAME_SKIP_RATE == 1:

processed_frame, landmarks = process_frame(detector, predictor, fram)

Display the processed frame

cv2.imshow('Facial Landmark Detection', processed_frame)

Handle Keyboard Input

key = cv2.waitKey(1) & 0xFF

if key == ord('q'):

break

elif key == ord('s'):

TODO: Save the current frame and landmarks and increment the frame_number

elif key == ord(' '):

print('Facial Landmarks:', landmarks)

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2024

● Explain the code.
● How does changing the FRAME_SKIP_RATE value affect the performance and output

of the program?
● What is the role of the process_frame() function, and how does it contribute to

the facial landmark detection workflow?

o In this lab, our focus is entirely on landmarks, and we will not be working directly with images.

1. Registration
In the last part, we first detect the facial landmarks using the Dlib library. To
effectively analyze and compare facial features, it is crucial to align facial images so
that corresponding landmarks match.
we need a transformation to normalize the images and convert them to the neutral
face. So, we need to find the coefficients A* and b* according to the following
equations to normalize each face to a neutral face.

This process, known as registration, involves aligning all captured images relative to
a Neutral_Face. The equations necessary for solving this registration are
implemented in the class FaceRegister().

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2024

Complete the Register Function

This function is designed to take a neutral face and another face as inputs, align the
second face to the neutral one, and return the transformed face. To accomplish this,
you can create an object from the FaceRegister()class and use it to perform the
registration.

Task1.py
def Register(Neutral_Face, Face, Method="affine"):

TODO: Implement the registration logic

TODO: return transformed_face

pass

● Why is it important to apply similarity registration before computing the
average face? How does this step affect the final result?

To visualize the registration results, you need to implement this function. It should
display the original face, the neutral face, and the transformed face side by side for
comparison. Be sure to utilize the plot_face() function from utils.py to
achieve this.

Task1.py
def plot_transformed_face(Face, Neutral_Face, transformed_face):

TODO: Plot 1: Original Face

TODO: Plot 2: Neutral Face

TODO: Plot 3: transformed Face

pass

2. Averaging Faces
To proceed, complete the Task2 by implementing the logic to apply similarity
registration and calculate the average face for all the facial expressions you have
recorded. Additionally, use the plot_transformed_face() function to display
the Face, Neutral_Face, and transformed_face.
Remember, no transformations should be applied to the neutral face.

Task2.py
Neutral_Face = np.load('images_landmarks/landmarks_0.npy')

Folder containing landmarks .npy files

landmarks_folder = 'images_landmarks'

transformed_landmarks_folder = 'transformed_landmarks'

Average_landmarks_folder = 'Average_landmarks'

Initialize a list to hold the flattened transformed_face arrays

Flattened_Faces = [Neutral_Face.ravel()]

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2024

TODO: compute Flattened_Faces and plot transformed faces Through all landmarks

TODO: save transformed face(landmarks)

average_face = # TODO: compute average face(landmarks) from transformed faces

filename = os.path.join(Average_landmarks_folder, "average_face.npy")

np.save(filename, average_face)

filename = os.path.join(Average_landmarks_folder, "Flattened_Faces.npy")

np.save(filename, Flattened_Faces)

TODO: Plot the average_face

● What does the average face represent? Use the image below to illustrate your
explanation.

3. Face Models and Animating Principal Modes
In this part, you will use all the facial expressions you have created to build a face
model. To do this, you need to apply the Principal Component Analysis (PCA)
procedure to all the registered faces. The goal is to compute the principal
components using Singular Value Decomposition (SVD). You need to:

1. Subtract the average face from the other faces.
2. ﻿Apply PCA to compute the principal components, using eigen analysis or SVD.
3. ﻿choose the first k principal components that best reconstruct the primary face.

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2024

Task3.py
Load the average face and flattened faces

Average_Face = np.load('Average_landmarks/average_face.npy')

Flattened_Faces = np.load('Average_landmarks/Flattened_Faces.npy') # Shape: (n_samples,

n_features)

Flattened_Faces_centered = # TODO

TODO: Perform Singular Value Decomposition

num_components = # TODO

U_n = U[:, :num_components]

TODO: choose the first k principal components and save it

K =

np.save('U_k.npy', U_k)

np.save('S_k.npy', S_k)

● what number of singular vectors (eigenvectors or num_components) you must
take? Why? (you must pay attention to singular values or eigenvalues.)

● What roles do eigenvectors and eigenvalues play in Principal Component
Analysis (PCA) when applied to facial data?

Task4
This task aims to compute eigenvectors and eigenvalues for Principal Component
Analysis (PCA) using Eigen Decomposition (ED) and compare the results with those
obtained from the Singular Value Decomposition (SVD) method.

Task5
Animate the first k modes (k=16) of variation. The animation should follow the
formula:

Model = μ + a · Ui
where a ranges from -σ to σ and i denotes mode.

Use this formula to generate a dynamic visualization for each mode, clearly
demonstrating the impact of the principal components on the face model.

K. N. Toosi University of Technology

Linear Algebra for Computer Science - B. Nasihatkon
Fall 2024

Task5.py
Load the average face and flattened faces

Average_Face = np.load('Average_landmarks/average_face.npy')

U_k = np.load('U_k.npy')

S_k = np.load('S_k.npy')

Mode =

TODO: loop in ranges for each mode and plot active shape model (use plot_face())

● how would you interpret the differences observed between the first few modes
versus the later modes?

● What role does the average face serve in the animation regarding the
variations from the principal components?

K. N. Toosi University of Technology

