Homework 1

The following proves that the inverse of a bijective linear map is also linear. Your task is to write it under LaTeX.

Let $f: U \rightarrow V$ be a bijective linear map, and $f^{-1}: V \rightarrow U$ be its inverse. Consider two points $y_{1}, y_{2} \in V$. We want to show that

$$
\begin{equation*}
f^{-1}\left(\alpha y_{1}+\beta y_{2}\right)=\alpha f^{-1}\left(y_{1}\right)+\beta f^{-1}\left(y_{2}\right), \tag{1}
\end{equation*}
$$

for any pair of real numbers α, β.
Let $x_{1}=f^{-1}\left(y_{1}\right)$ and $x_{2}=f^{-1}\left(y_{2}\right)$. We have

$$
\begin{align*}
f^{-1}\left(\alpha y_{1}+\beta y_{2}\right) & =f^{-1}\left(\alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right)\right) \\
& =f^{-1}\left(f\left(\alpha x_{1}+\beta x_{2}\right)\right) \\
& =\alpha x_{1}+\beta x_{2} \\
& =\alpha f^{-1}\left(y_{1}\right)+\beta f^{-1}\left(y_{2}\right) \tag{z}
\end{align*}
$$

where the second line of (2) from the fact that f is linear. This prove that f^{-1} is also linear.

You have to follow the following rules:

- Your document must contain a title, a date, and your name as the author. Also, write your affiliation as "K. N. Toosi University of Technology".
- Write all scalars with regular italic letters (\$a\$, \$b\$, \$lalpha\$, \$lbeta\$.
- Write all vectors with bold letters (\$1mathbf\{x\}\$).
- Write the spaces U , and V using calligraphic letters (\mathcal\{U\}).
- You can define macros to make your life easier (for instance Inewcommand\{\tU\}\{\mathcal\{U\}\})
- Use the equation, align, or similar environments for equations (1) and (2). Notice that equation (2) spans multiple lines. The equal signs must be well aligned (look at the align environment).
- Write the above in a proof environment. Also, state what you are trying to prove in a theorem or proposition environment.
- look here for more details https://www.overleaf.com/learn/latex/Theorems and proofs
- Submit two files name homework1.pdf file and a homework1.tex file.

