Mathematics for AI Homework 2

Read these first:

i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a single PDF file.
iii Up to 15% extra score will be given to solutions written under $\mathrm{A}_{\mathrm{E}} \mathrm{X}$, provided that you follow either of the following conventions:
(a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \backslash mathbf $\{a\}$), and matrices with bold upper-case letters (A, using \mathbf\{A\}), or
(b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (\mathbf{a}, \mathbf{A}), and matrices with typewritter upper-case letters (A, using \mathtt\{A\}).
(c) You latex document must contain a title, a date, and your name as the author.
(d) In all cases, you must submit a single PDF file.
(e) If writing under $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, you must submit the .tex source (and other nessesary source files if there are any) in addition to the PDF file.

Here is a short tutorial on IATEX: https://www.overleaf.com/ $^{\text {/ }}$ learn/latex/Learn_LaTeX_in_30_minutes

Questions For each questions, you may use the results of the previous questions (but not the following questions).

Matrices

1. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$, such that $\mathrm{Ax}=0$ for all $\mathbf{x} \in \mathbb{R}$. Prove that $\mathrm{A}=0_{m \times n}$, that is all the entries of A are zero.
2. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$, such that $\mathrm{A} \mathbf{x}_{i}=0$ for $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{n}$, where $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ form a basis for \mathbb{R}^{n}. Prove that $\mathrm{A}=0_{m \times n}$.
3. Consider a square matrix $\mathrm{A} \in \mathbb{R}^{n \times n}$ for which $\mathrm{Ax}=\mathrm{x}$ for all $\mathrm{x} \in \mathbb{R}^{n}$. Prove that $\mathrm{A}=\mathrm{I}_{n}$, the n by n identity matrix.
4. Give an example of a matrix $A \in \mathbb{R}$, such that $A \mathbf{x}=\mathbf{x}$ for some nonzero vector $\mathbf{x} \in \mathbb{R}^{n}, \mathrm{~A}$ is not the identity matrix.
5. Assume that the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent. Prove that the set of vectors $\mathbf{a}_{1}^{\prime}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are also linearly independent where $\mathbf{a}_{1}^{\prime}=\mathbf{a}_{1}+\beta \mathbf{a}_{2}$ for some scalar β.
6. Consider two matrices $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathrm{B} \in \mathbb{R}^{n \times p}$. Prove that $\mathcal{C}(\mathrm{AB}) \subseteq \mathcal{C}(\mathrm{A})$, where $\mathcal{C}(\cdot)$ represents the column space.
7. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$ and a square invertible matrix $\mathrm{B} \in \mathbb{R}^{n \times n}$. Prove that $\mathcal{C}(\mathrm{A})=\mathcal{C}(\mathrm{AB})$. (Hint: to prove that two sets S_{1} and S_{2} are equation you can show $S_{1} \subseteq S_{2}$ and $S_{2} \subseteq S_{1}$).
8. Consider two matrices $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathrm{B} \in \mathbb{R}^{n \times p}$ where B has full row rank (i.e. $\operatorname{rank}(B)=n)$. Prove that $\mathcal{C}(A)=\mathcal{C}(A B)$.

Matrix Multiplication

9. Consider the matrices $\mathrm{A}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right] \in \mathbb{R}^{m \times n}, \mathrm{D}=\operatorname{diag}\left(\left[d_{1}, d_{2}, \ldots, d_{n}\right]\right) \in$ $\mathbb{R}^{n \times n}, \mathrm{~B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{R}^{p \times n}$, where D is a diagonal matrix with diagonal elements d_{i}. Show that

$$
\mathrm{ADB}^{T}=\sum_{i=1}^{n} d_{i} \mathbf{a}_{i} \mathbf{b}_{i}^{T}
$$

Linear Equations

To answer the following questions you need to use the fact that the set of solutions to a system of linear equations $\mathrm{A} \mathbf{x}=\mathbf{b}$ is in the form of $\left\{\mathbf{x}_{p}+\mathbf{x}_{n} \mid\right.$ $\left.\mathbf{x}_{n} \in \mathcal{N}(\mathrm{~A})\right\}$, where \mathbf{x}_{p} is a particular solution.
10. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be a fat matrix (i.e. $m<n$) with full row rank and $\mathbf{b} \in \mathbb{R}^{m}$. Show that $\mathbf{A} \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
11. Let $\mathrm{A} \in \mathbb{R}^{m \times n}$ be a tall matrix (i.e. $m>n$) with full column rank and $\mathbf{b} \in \mathbb{R}^{m}$. Show that $\mathrm{A} \mathbf{x}=\mathbf{b}$ has either no solution or exactly one solution.
12. Consider the system of linear equations $\mathbf{A} \mathbf{x}=\mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, and let \mathcal{S} be the set of solutions to it. Show that
(a) \mathcal{S} is a linear subspace if and only if $\mathbf{b}=\mathbf{0}$.
(b) If \mathcal{S} is nonempty, then there exists a vector $\mathbf{y} \in \mathbb{R}^{n}$ such that the set $\{\mathbf{z}-\mathbf{y} \mid \mathbf{z} \in \mathcal{S}\}$ is a linear subspace.

Projections

13. Consider a linear subspace \mathcal{S} and a vector $\mathbf{y} \in \mathcal{S}$. Using the projection formula, show that the projection of y into \mathcal{S} is itself.
14. For a linear subspace $\mathcal{S} \subseteq \mathbb{R}^{n}$ its orthogonal complement is defined as $\mathcal{S}^{\perp}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid \mathbf{y}^{T} \mathbf{x}=0\right.$ for all $\left.\mathbf{x} \in \mathcal{S}\right\}$. In other words, \mathcal{S}^{\perp} comprises all the vectors that are perpendicular to all vectors in \mathcal{S}. Show that the orthogonal complement of a linear subspace is a linear subspace.
15. Prove that the null space of a matrix is the orthogonal complement of its row space.

Determinant

16. Show that $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.
17. Prove that the determinant of an orthogonal matrix is either equal to 1 or -1 . (Hint: use the definition of an orthogonal matrix.)
18. Show that the determinant of a projection matrix is either equal to 0 or 1 . (Hint: remember that projections are idempotent.) How do you explain this geometrically?

Eigenvalues and Eigenvectors

19. What is the relation between the eigenvalues and eigenvectors of the square matrix A and those of $\mathrm{A}-\alpha \mathrm{I}$ where $\alpha \in \mathbb{R}$ and I is the identity matrix?
20. Prove that any eigenvalue of A is also an eigenvalue of A^{T}. (Hint: use the characteristic polynomial).
21. The square matrix A is called (left) stochastic (or a Markov matrix) if its elements are nonnegative and its columns add up to 1 (programmatically $\operatorname{sum}(A, \operatorname{axis}=0)==\operatorname{ones}((1, n)))$. Prove that A has at least one unit eigenvalue $\lambda=1$. (Hint: First prove that A^{T} has a unit eigenvalue.)
22. Let \mathbf{v} be an eigenvector of A with a nonzero corresponding eigenvalue $\lambda \neq 0$. Prove that \mathbf{v} is in the column space of A .
23. Let A be a real symmetric matrix with real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, and corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$. Prove that if $\lambda_{i} \neq \lambda_{j}$ then $\mathbf{v}_{i} \perp \mathbf{v}_{j}$.
