Mathematics for AI Homework 3

Read these first:

i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a single PDF file. Also, write your answers neatly, in an organized and legible manner on paper.
iii Up to 15% extra score will be given to solutions written under $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, provided that you follow either of the following conventions:
(a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using $\backslash \operatorname{mathbf}\{\mathrm{a}\}$), and matrices with bold upper-case letters (A, using \mathbf\{A\}), or
(b) represent scalars with normal (italic) letters (a, A), vectors with bold letters ($\mathbf{a}, \mathbf{A})$, and matrices with typewriter upper-case letters (A, using \mathtt\{A\}).
(c) You latex document must contain a title, a date, and your name as the author.
(d) In all cases, you must submit a single PDF file.
(e) If writing under $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$, you must submit the .tex source (and other necessary source files if there are any) in addition to the PDF file.

Here is a short tutorial on $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$: https://www.overleaf.com/ learn/latex/Learn_LaTeX_in_30_minutes

Questions

For each questions, you may use the results of the previous questions (but not the following questions).

Positive Definite Matrices

For all question in this section, by positive definite we mean symmetric positive definite.

1. Prove that a symmetric matrix is positive definite if and only if all its eigenvalues are positive. (Remember from the class that the eigen-decomposition of a symmetric matrix is in the form of $\mathrm{A}=\mathrm{V} \Lambda \mathrm{V}^{-1} \mathrm{~V} \Lambda \mathrm{~V}^{T}$.)
2. Show that the diagonal elements of a positive definite matrix are all positive definite.
3. Remember from the class that an operation $\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ defined on a vector space \mathcal{V} is an inner product if
(a) $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ for all $\mathbf{u} \in \mathcal{V}$,
(b) $\langle\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$,
(c) $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{V}$,
(d) $\langle\alpha \mathbf{u}+\beta \mathbf{v}, \mathbf{w}\rangle=\alpha\langle\mathbf{u}, \mathbf{w}\rangle+\beta\langle\mathbf{v}, \mathbf{w}\rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and $\alpha, \beta \in \mathbb{R}$.

Let $\mathrm{A} \in \mathbb{R}^{n \times n}$ be any positive definite matrix. Show that the operation $\langle\cdot, \cdot\rangle_{\mathrm{A}}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\langle\mathbf{u}, \mathbf{v}\rangle_{\mathrm{A}}=\mathbf{u}^{T} \mathbf{A} \mathbf{v}
$$

is indeed an inner product.

Singular Value Decomposition

4. Let A be a nonsingular square matrix and $A=\mathrm{U} \Sigma \mathrm{V}^{T}$ be its (full) SVD. Prove that $\operatorname{det}(\mathrm{U}) \operatorname{det}(\mathrm{V})=\operatorname{sign}(\operatorname{det}(\mathrm{A}))$, that is $\operatorname{det}(\mathrm{U}) \operatorname{det}(\mathrm{V})=1$ if $\operatorname{det}(\mathrm{A})>$ 0 and $\operatorname{det}(\mathrm{U}) \operatorname{det}(\mathrm{V})=1$ if $\operatorname{det}(\mathrm{A})<0$.
5. Show that for a symmetric positive definite matrix the eigenvalue decomposition $\mathrm{A}=\mathrm{V} \Lambda \mathrm{V}^{-1}=\mathrm{V} \Lambda \mathrm{V}^{T}$ is the same as the singular value decomposition.
6. Find a way to obtain the SVD of a symmetric matrix from its eigenvalue decomposition $A=V \Lambda V^{T}$. Notice that the diagonal elements of Λ might be negative.
7. Consider a matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$ and two orthogonal matrices $\mathrm{P} \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$. Show that the singular values of PAQ is the same as the singular values of A .

Matrix inner product

8. Perhaps the simplest way to define an inner product between a pair of matrices $\mathrm{A}, \mathrm{B} \in \mathbb{R}^{m \times n}$ is $\langle\mathrm{A}, \mathrm{B}\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}$. This is the same as vectorizing the matrices and taking their dot product, and is sometimes called the Frobenius Inner Product.
(a) Prove that real matrices $\langle\mathrm{A}, \mathrm{B}\rangle=\operatorname{trace}\left(\mathrm{A}^{T} \mathrm{~B}\right)=\operatorname{trace}\left(\mathrm{B}^{T} \mathrm{~A}\right)=\operatorname{trace}\left(\mathrm{AB}^{T}\right)$, where trace $(\mathrm{S})=\sum_{i} S_{i i}$ gives the sum of the diagonal elements of a square matrix S.
(b) Prove that $\langle\mathrm{AB}, \mathrm{C}\rangle=\left\langle\mathrm{B}, \mathrm{A}^{T} \mathrm{C}\right\rangle=\left\langle\mathrm{A}, \mathrm{CB}^{T}\right\rangle \operatorname{Hint}:(\mathrm{AB})^{T}=\mathrm{B}^{T} \mathrm{~A}^{T}$.

Note: Same results hold for complex matrices by replacing the transpose operation with conjugate transpose: $\langle\mathrm{AB}, \mathrm{C}\rangle=\left\langle\mathrm{B}, \mathrm{A}^{*} \mathrm{C}\right\rangle=\left\langle\mathrm{A}, \mathrm{CB}^{*}\right\rangle$.

Matrix Norms

9. Show that the squred Frobenius norm is the same as the Frobenius inner product of a matrix by itself, that is $\|\mathrm{A}\|_{F}^{2}=\langle\mathrm{A}, \mathrm{A}\rangle$.
10. A matrix norm is called Unitarily Invariant if $\|\mathrm{A}\|=\|\mathrm{UAV}\|$ for any orthogonal matrices U and V of compatible size. Using the above and the properties of matrix inner product prove that the Frobenius norm is unitarily invariant. Notice that for orthogonal matrices we have $\mathrm{U}^{T} \mathrm{U}=\mathrm{UU}^{T}=\mathrm{I}$. (A more general definition that also works for complex matrices is when U and V are unitary, that is $\mathrm{U}^{*} \mathrm{U}=\mathrm{UU}^{*}=\mathrm{I}$).
11. Use Question 7 to prove that the spectral norm and nuclear norm are also unitarily invariant.

Multivariate Calculus

12. Show that for a symmetric matrix B the gradient of $1 /\left(x^{T} B x\right)$ with respect to \mathbf{x} is $-2 \mathrm{Bx} /\left(\mathrm{x}^{T} \mathrm{Bx}\right)^{2}$ (if the gradient exists at \mathbf{x}).
13. Show that for symmetric matrices A and B the gradient of $f(\mathbf{x})=\left(\mathbf{x}^{T} \mathrm{Ax}\right) /\left(\mathbf{x}^{T} \mathrm{~B} \mathbf{x}\right)$ with respect to x is equal to

$$
2\left(\mathrm{~A} \mathbf{x}\left(\mathbf{x}^{T} \mathrm{~B} \mathbf{x}\right)-\mathrm{B} \mathbf{x}\left(\mathbf{x}^{T} \mathrm{~A} \mathbf{x}\right)\right) /\left(\mathbf{x}^{T} \mathrm{~B} \mathbf{x}\right) 2=2(\mathrm{~A} \mathbf{x}-f(\mathbf{x}) \mathrm{B} \mathbf{x}) /\left(\mathbf{x}^{T} \mathbf{B} \mathbf{x}\right)
$$

if the gradient exists at \mathbf{x}.
14. Let A be symmetric. Calculate the gradient of $\exp \left(-\mathbf{x}^{T} \mathrm{Ax}\right)$ with respect to \mathbf{x}.
15. Let A be (symmetric) positive definite. Compute the gradient of $\log (1+$ $\mathbf{x}^{T} \mathbf{A x}$) with respect to \mathbf{x}.

Mathematics for AI
Fall 2023

16. Consider the function $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x} /\|\mathbf{x}\|^{2}=\mathbf{x}^{T} \mathbf{A} \mathbf{x} /\left(\mathbf{x}^{T} \mathbf{x}\right)$ defined for a symmetric matrix A. Show that the critical points of f are exactly the eigenvectors of A. The critical points of a function f are points \mathbf{x} at which the gradient is zero or nonexistant.
17. Consider the function $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A x} /\left(\mathbf{x}^{T} \mathbf{B} \mathbf{x}\right)$ defined for symmetric matrices A and B. Show that if B is invertible then the critical points of f are either the points for which $\mathbf{x}^{T} \mathrm{Bx}=0$ or the eigenvectors of $\mathrm{B}^{-1} \mathrm{~A}$.

