Mathematics for AI Homework 4

Read these first:

i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a single PDF file. Also, write your answers neatly, in an organized and legible manner on paper.
iii Up to 15% extra score will be given to solutions written under $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, provided that you follow either of the following conventions:
(a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using $\backslash \operatorname{mathbf}\{\mathrm{a}\}$), and matrices with bold upper-case letters (A, using \mathbf\{A\}), or
(b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (\mathbf{a}, \mathbf{A}), and matrices with typewriter upper-case letters (A, using \mathtt\{A\}).
(c) You latex document must contain a title, a date, and your name as the author.
(d) In all cases, you must submit a single PDF file.
(e) If writing under $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, you must submit the .tex source (and other necessary source files if there are any) in addition to the PDF file.

Here is a short tutorial on $\mathrm{AAT}_{\mathrm{E}} \mathrm{X}$: https://www.overleaf.com/ learn/latex/Learn_LaTeX_in_30_minutes

Behrooz Nasihatkon

Questions

For each questions, you may use the results of the previous questions (but not the following ones). Throughout this document, the operations diag() and Diag(•) are defined as follows:

- $\operatorname{diag}(\mathrm{A})$ creates a vector $\in \mathbb{R}^{n}$ from the diagonal elements of the matrix $\mathrm{A} \in \mathbb{R}^{m \times n}$, and
- $\operatorname{Diag}(\mathbf{x})$ creates an $n \times n$ diagonal matrix whose diagonal elements are the entries of $\mathbf{x} \in \mathbb{R}^{n}$.

Notice that both these operations are linear.

Adjoint

Consider two inner product spaces \mathcal{U} and \mathcal{V}. A mapping $f^{*}: \mathcal{V} \rightarrow \mathcal{U}$ is called the adjoint of the linear map $f: \mathcal{U} \rightarrow \mathcal{V}$ if

$$
\langle\mathbf{y}, f(\mathbf{x})\rangle=\left\langle f^{*}(\mathbf{y}), \mathbf{x}\right\rangle,
$$

for all $\mathbf{x} \in \mathcal{U}$ and $\mathbf{y} \in \mathcal{V}$.

1. Show that for the linear map $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $f(\mathbf{x})=\mathrm{Ax}$ with $\mathrm{A} \in \mathbb{R}^{m \times n}$ the adjoint is defined by $f^{*}(\mathbf{y})=\mathrm{A}^{T} \mathbf{y}$.
2. Show that the $\operatorname{diag}(\cdot)$ and $\operatorname{Diag}(\cdot)$ operations defined above are adjoints of each other (with respect to the ordinary dot product defined in previous assignments).

Jacobian

3. Derive the Jacobian matrix for the following with respect to $\mathbf{x} \in \mathbb{R}^{n}$ using the directional derivative method.
(a) $\operatorname{Diag}(\mathbf{x}) \mathbf{x}$,
(b) $\operatorname{Diag}(\mathbf{x}) \mathbf{\mathbf { a } ^ { T }} \mathbf{x}$ where $\mathbf{a} \in \mathbb{R}^{n}$,
(c) $\mathrm{A} \operatorname{Diag}(\mathbf{x}) \mathrm{x}$ where $\mathrm{A} \in \mathbb{R}^{n \times n}$,
(d) $\left(\mathbf{x}^{T} \mathrm{Ax}\right)^{2} \mathrm{~A} \mathbf{x}$ where $\mathrm{A} \in \mathbb{R}^{n \times n}$,

Quadratic Forms

4. Consider the quadratic form $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as $f(\mathbf{x})=\mathbf{x}^{T} \tilde{A} \mathbf{x}$, where

$$
\tilde{A}=\left[\begin{array}{cc}
1 & 2 \\
4 & -1
\end{array}\right]
$$

Find a symmetric matrix A such that $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}$.
5. Show that for every function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as $f(\mathbf{x})=\mathbf{x}^{T} \tilde{A} \mathbf{x}$, there exist a symmetric matrix A such that $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}$.

Mathematics for AI
Fall 2023

Behrooz Nasihatkon

Hessian

6. Find the Gradient and the Hessian for the following with respect to $\mathrm{x} \in \mathbb{R}^{n}$
(a) $\operatorname{diag}\left(\mathbf{x A} \mathbf{x}^{T}\right)$,
(b) $\mathbf{x}^{T} \operatorname{Diag}(\mathbf{x}) \mathbf{x}$,
(c) $\left(\mathbf{x}^{T} \mathrm{~A} \mathbf{x}\right)^{2}$ where $\mathrm{A} \in \mathbb{R}^{n \times n}$ is a symmetric matrix,
(d) $\left(\mathbf{x}^{T} \mathbf{A x}\right) /\left(\mathbf{x}^{T} \mathbf{B x}\right)$ where $\mathrm{A}, \mathrm{B} \in \mathbb{R}^{n \times n}$ are symmetric,
(e) $\sum_{i=1}^{n} \sqrt{\mathbf{x}^{T} \mathrm{~A}_{i} \mathbf{x}}$ where $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n} \in \mathbb{R}^{n \times n}$ are (symmetric) positive definite.
