Mathematics for AI Homework 4

Read these first:

- i You may write your solutions on paper, under a word processing software (MS-word, Libre Office, etc.), or under LATEX.
- ii If writing on paper, you must use a scanner device or a Camera Scanner (CamScanner) software to scan the document and submit a *single* PDF file. Also, write your answers neatly, in an organized and legible manner on paper.
- iii Up to 15% extra score will be given to solutions written under L^AT_EX, provided that you follow either of the following conventions:
 - (a) Represent scalars with normal (italic) letters (a, A), vectors with bold lower-case letters (a, using \mathbf{a}), and matrices with bold upper-case letters (A, using \mathbf{a}), or
 - (b) represent scalars with normal (italic) letters (a, A), vectors with bold letters (a, A), and matrices with typewriter upper-case letters (A, using \mathtf{A}).
 - (c) You latex document must contain a *title*, a *date*, and your name as the author.
 - (d) In all cases, you must submit a *single* PDF file.
 - (e) If writing under LATEX, you must submit the *.tex* source (and other necessary source files if there are any) in addition to the PDF file.

Here is a short tutorial on LATEX: https://www.overleaf.com/ learn/latex/Learn_LaTeX_in_30_minutes

Questions

For each questions, you may use the results of the previous questions (but not the following ones). Throughout this document, the operations diag() and $Diag(\cdot)$ are defined as follows:

- diag(A) creates a vector $\in \mathbb{R}^n$ from the diagonal elements of the matrix $A \in \mathbb{R}^{m \times n}$, and
- $\text{Diag}(\mathbf{x})$ creates an $n \times n$ diagonal matrix whose diagonal elements are the entries of $\mathbf{x} \in \mathbb{R}^n$.

Notice that both these operations are linear.

Adjoint

Consider two inner product spaces \mathcal{U} and \mathcal{V} . A mapping $f^* \colon \mathcal{V} \to \mathcal{U}$ is called the *adjoint* of the linear map $f \colon \mathcal{U} \to \mathcal{V}$ if

$$\langle \mathbf{y}, f(\mathbf{x}) \rangle = \langle f^*(\mathbf{y}), \mathbf{x} \rangle,$$

for all $\mathbf{x} \in \mathcal{U}$ and $\mathbf{y} \in \mathcal{V}$.

- 1. Show that for the linear map $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ defined by $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ the adjoint is defined by $f^*(\mathbf{y}) = \mathbf{A}^T \mathbf{y}$.
- 2. Show that the diag(\cdot) and Diag(\cdot) operations defined above are adjoints of each other (with respect to the ordinary dot product defined in previous assignments).

Jacobian

- 3. Derive the Jacobian matrix for the following with respect to $\mathbf{x} \in \mathbb{R}^n$ using the directional derivative method.
 - (a) $Diag(\mathbf{x}) \mathbf{x}$,
 - (b) $\operatorname{Diag}(\mathbf{x}) \mathbf{a} \mathbf{a}^T \mathbf{x}$ where $\mathbf{a} \in \mathbb{R}^n$,
 - (c) $A \operatorname{Diag}(\mathbf{x}) \mathbf{x}$ where $A \in \mathbb{R}^{n \times n}$,
 - (d) $(\mathbf{x}^T \mathbf{A} \mathbf{x})^2 \mathbf{A} \mathbf{x}$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$,

Quadratic Forms

4. Consider the quadratic form $f \colon \mathbb{R}^2 \to \mathbb{R}$ defined as $f(\mathbf{x}) = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$, where

$$\tilde{\mathtt{A}} = \left[egin{array}{cc} 1 & 2 \\ 4 & -1 \end{array}
ight].$$

Find a symmetric matrix A such that $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$.

5. Show that for every function $f \colon \mathbb{R}^2 \to \mathbb{R}$ defined as $f(\mathbf{x}) = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$, there exist a *symmetric* matrix \mathbf{A} such that $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$.

Hessian

- 6. Find the Gradient and the Hessian for the following with respect to $\mathbf{x} \in \mathbb{R}^n$
 - (a) diag($\mathbf{x} \mathbf{A} \mathbf{x}^T$),
 - (b) $\mathbf{x}^T \operatorname{Diag}(\mathbf{x}) \mathbf{x}$,
 - (c) $(\mathbf{x}^T \mathbf{A} \mathbf{x})^2$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a *symmetric* matrix,
 - (d) $(\mathbf{x}^T \mathbf{A} \mathbf{x})/(\mathbf{x}^T \mathbf{B} \mathbf{x})$ where $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ are symmetric,
 - (e) $\sum_{i=1}^{n} \sqrt{\mathbf{x}^T \mathbf{A}_i \mathbf{x}}$ where $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ are (symmetric) positive definite.