Lab Instructions - session 2
 Linear Combination, Span, Basis, Row and Column Space, Linear Maps

Drawing 3D vectors

To draw 3D objects first add these three lines after importing matplotlib:

```
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
```

A vector can be plotted either as a point or an arrow. To plot a set of 3D points you can use the scatter function.

plot1.py

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add subplot(111, projection='3d')
# plot multiple points
u}=\mathrm{ np.array ([1,2,3])
v}=np.array([2, 0, -2]
w = np.array ([-1, -1, -1])
xs=[u[0],v[0],w[0]]
ys}=[u[1],v[1],w[1]
zs}=[u[2],v[2],w[2]
ax.scatter(xs, ys, zs)
plt.show()
```

To plot an arrow you may use the quiver function:

plot2.py

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# plot multiple points
u = np.array([1, 2,3])
v = np.array([2, 0, -2])
w = np.array([-1, -1, -1])
xs = [u[0], v[0], w[0]]
ys = [u[1], v[1], w[1]]
zs = [u[2], v[2], w[2]]
# base of the vectors set to the origin
tail_x = [0,0,0]
tail_y = [0,0,0]
tail_z = [0,0,0]
ax.set xlim(-3,3)
ax.set_ylim(-3,3)
ax.set_zlim(-3,3)
ax.quiver(tail_x, tail_y, tail_z, xs, ys, zs, color='r')
plt.show()
```

- Rotate the plot to view it from different angles. Do you think \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly dependent? If yes, how can you write one of them as a linear combination of the others?

Linear combination/span

The following code generates 2 random scalars \mathbf{a} and \mathbf{b} using the numpy. random. rand function and plots the linear combination $\mathbf{w}=\mathbf{a} \mathbf{u}+\mathbf{b} \mathbf{v}$ of the vectors \mathbf{u} and \mathbf{v}.

plot3.py

```
import numpy as np
```

K. N. TOOSI UNIVERSITY OF TECHNOLOGY

```
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# plot multiple points
u = np.array([1,2,3])
v = np.array([2, 0, -2])
xs = [u[0], v[0]]
ys = [u[1], v[1]]
zs = [u[2], v[2]]
# base of the vectors set to the origin
tail_x = [0,0]
tail_y = [0,0]
tail_z = [0,0]
ax.set_xlim(-3,3)
ax.set_ylim(-3,3)
ax.set_zlim(-3,3)
ax.quiver(tail_x, tail_y, tail_z, xs, ys, zs, color='r')
a,b = np.random.rand(2)
w = a * u + b * v
ax.scatter(w[0], w[1], w[2], color='b')
plt.show()
```

- Change the code to repeat plotting the linear combination w 200 times. This can be done by putting the following three lines in a loop:

```
a,b = np.random.rand(2)
w = a * u + b * v
ax.scatter(w[0], w[1], w[2], color='b')
```

- Notice that the plotted points are in span(u,v). Rotate the plot to see this. Why is the shape of the scatter like that? Notice that the function numpy . random. rand generates random samples in the interval $[0,1)$.
- Replace the function numpy . random. rand with numpy . random. randn. What happens? and why?

Animating a plot

Run the following piece of code. What does it do?

plot4.py

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# %matplotlib
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
u = np.array ([1,2,3])
v}=np.array([2.0, 0, -2]
rng = np.linspace (0,1,20)
for alpha in rng:
    w = (1-alpha) * u + alpha * v
    ax.set_xlim(-4,4)
    ax.set_ylim(-4,4)
    ax.set_zlim(-4,4)
    ax.quiver(0,0,0, u[0], u[1], u[2], color='r')
    ax.quiver(0,0,0,v[0],v[1],v[2], color='r')
    ax.quiver(0,0,0, w[0], w[1], w[2], color='b')
    ax.scatter(w[0], w[1], w[2], color='b')
plt.show()
```

- Rotate the plot to observe it from different angles.
- Add the following lines at the end of the body of the for loop. What happens?
plt.draw()
plt.pause(.1)
* (if using Jupyter notebook, uncomment \%matplotlib in the above to see the output correctly.)
- A linear combination $\mathbf{w}=\boldsymbol{a} \mathbf{u}+\boldsymbol{b} \mathbf{v}$ of two vectors \mathbf{u} and \mathbf{v} is an affine combination if $\boldsymbol{a}+\boldsymbol{b}=\mathbf{1}$. It is also called a convex combination if $\mathbf{a}, \boldsymbol{b} \geq \mathbf{0}$ in addition to $\boldsymbol{a}+\boldsymbol{b}=\mathbf{1}$. Are the vectors w created here are affine combinations of \mathbf{u} and \mathbf{v} ? Are they also convex combinations?
- Change np. linspace $(0,1,20)$ to np. linspace $(-0.5,1.5,20)$.
- How does the plot change and why?
- Are all the vectors \mathbf{w} still affine combinations of \mathbf{u} and \mathbf{v} ?
- What about convex combinations?
- Add ax.cla() at the beginning of the for loop (cla stands for clear axis). What happens?

Shape models

A "shape" can be represented as an ordered or unordered set of points. Here, we represent a shape consisting of \mathbf{n} points by an \mathbf{n} by $\mathbf{2}$ matrix, each row of which represents a point. The following code creates a pair of 2D shapes and plots them:

```
shape1.py
```

```
import numpy as np
import matplotlib.pyplot as plt
n = 11
S1 = np.vstack((-np.cos(np.linspace(0,np.pi,n)),
    -.7+np.sin(np.linspace(0,np.pi,n)))).T
S2 = np.vstack((np.linspace(-1.2,1.2,n),
    np.zeros(n))).T
print(S1.shape)
print(S2.shape)
plt.plot(S1[:,0], S1[:,1], 'bo-')
plt.plot(S2[:,0], S2[:,1], 'ro-')
plt.axis('equal')
plt.xlim(-2,2)
plt.ylim(-2,2)
plt.show()
```

- What are the shapes (dimensions) of $\mathbf{s 1}$ and $\mathbf{s 2}$?

Shapes, as defined above, form a vector space (can be scaled and added together). To look at matrices as vectors, you can vectorize them. That is to flatten an $\mathbf{n} \times 2$ shape matrix to form a vector of size $\mathbf{2 n}$. Then perform addition, scaling, or linear combination:

```
s1 = s1.ravel()
s2 = S2.ravel()
```

```
s3=a*s1+b*s2
S3 = s3.reshape ((n,2))
```

But, since matrices are added element-wise, you may simply write:

```
S3 = a * S1 + b * S2
```

- Plot the average shape $\mathrm{s} 3=0.5 * \mathrm{~s} 1+0.5 * \mathrm{~s} 2$.

Task 1 - Shape Morphing

Use what you learned in section "Animating a plot" (plt.draw, plt.pause, ax.cla) to animate the shape $\mathbf{~ S 3}$ in the form of S3 = (1-alpha) * S1 + alpha * S2, by letting alpha range from 0 to 1 (convex combination). Use plt.cla() instead of ax.cla().

- This is called shape morphing.
- Vary alpha from 0 to 1.5 (affine combinations). What happens?
- Try other ranges (e. g. -2 to 2). What's the output?
- Each shape has $\mathbf{2 n}$ (here 22) entries. But all the shapes you see are in $\mathbf{s p a n}(\mathbf{s} 1, \mathbf{s} 2)$, that is, they lie in a 2-dimensional subspace of a 22 -dimensional vector space.
- (Point correspondence matter) Change -np.cos (np.linspace (0,np.pi,n)) to $\mathrm{np} . \cos (\mathrm{np} . \operatorname{linspace}(0, \mathrm{np} . \mathrm{pi}, \mathrm{n})$) when defining s 1 . What happens? Why?

Task 2 - Face Model

A face can be represented as a shape model consisting of a set of landmark points. The code below imports three faces Face1, Face2, and Face3 and plots Face1. Plotting a face is done using the function plot_face defined below. The file face_data.py has been provided to you.
task2a.py

```
import matplotlib.pyplot as plt
import numpy as np
from face_data import Face1, Face2, Face3, edges
def plot_face(plt,X,edges,color='b'):
    "plots a face"
    plt.plot(X[:,0], X[:,1], 'o', color=color)
```

```
    i,j = edges[0] # edge from node i to node j
    xi = X[i,0]
    yi = X[i,1]
    xj = x[j,0]
    yj = X[j,1]
    # draw a line between X[i] and X[j]
plt.plot((xi,xj), (yi,yj), '-', color=color)
plt.axis('square')
plt.xlim(-100,100)
plt.ylim(-100,100)
plot_face(plt, Face1, edges, color='b')
plt.show()
```

- The list edge contains a list of edges, each in the form of (i, j). Print it to see how it looks.
- The function plot_face is supposed to plot the landmark points of the face, plus the edges between them. Currently, it only draws the first edge edge [0]. Change it to plot all the edges.
- Using the animation technique you learned above, morph a face shape from Face1 to Face2, from Face2 to Face3, and then from Face3 back to Face1.
- Like before, try varying alpha from -. 5 to 1.5 instead of 0 to 1.0 and see what happens.

For n vectors $v_{1}, v_{2}, \ldots, v_{n}$, a linear combination $a_{1} v_{1}+a_{2} v_{2}, \ldots+a_{n} v_{n}$ is called an affine combination if $a_{1}+a_{2}+\ldots+a_{n}=1$.It is also a convex combination if all the scalars a_{i} are nonnegative. Here, we want to find linear combinations of Face1, Face2, and Face3 to create TargetFace1 and TargetFace2.

task2b.py

```
import matplotlib.pyplot as plt
import numpy as np
from face_data import Face1, Face2, Face3, TargetFace1,
TargetFace2, edges
```

```
def plot_face(plt,X,edges,color='b'):
    "plots a face"
    plt.plot(X[:,0], X[:,1], 'o', color=color)
    i,j = edges[0] # edge from node i to node j
    xi = X[i,0]
    yi = X[i,1]
    xj = x[j,0]
    yj = x[j,1]
    # draw a line between X[i] and X[j]
    plt.plot((xi,xj), (yi,yj), '-', color=color)
```

 plt.axis('square')
 plt.xlim(-100,100)
 plt.ylim(-100,100)
 \# make a guess
$a=1 / 3$.
$\mathrm{b}=1 / 3$.
$c=1 / 3$.
F = a * Face1 + b * Face2 + c * Face3
plot_face(plt, TargetFace1, edges, color='r')
plot_face(plt, F, edges, color='g')
\# change $\mathrm{a}, \mathrm{b}, \mathrm{c}$ until the two plots align
plt.show()

- Find a convex combination of Face1, Face2, and Face3 to create TargetFace1. Keep tuning the scalars a, b, and c in the code until the blue and green plots align.
- Find a linear (not necessarily convex) combination to create TargetFace2. Assume a, b, and c are positive. Try to guess them yourself before reading the hint below:

$$
0 \quad \mathbf{a}=5.4 / 18=?
$$

- (Optional) Can you think of a way to find the scalars without trial and error?

Task 3 - Practice Vectorization

Consider an arbitrary matrix \mathbf{A} and a vector \mathbf{u} like the following

```
m,n}=20,1
A = np.random.rand (m,n)
u}=np.random.rand (n
```

We perform the following operation on \mathbf{A} and \mathbf{u} to create the vector \mathbf{v}.

```
v = np.zeros (m)
for i in range(n):
    v += A[:,i] * u[i]
```

- Write an equivalent program without loops in just a single line of code.

```
V = ..
```


Task 4 - Practice Vectorization

Consider two arbitrary matrices \mathbf{A} and \mathbf{B} with the same number of columns, like below

```
d = 10
m,n = 3, 4
A = np.random.rand (m,d)
B = np.random.rand (n,d)
```

We perform the following operation on \mathbf{A} and \mathbf{B} to create the matrix \mathbf{C}.

```
C = np.zeros((m,n))
for i in range(m):
    for j in range(n):
        C[i,j] = np.sum(A[i] * B[j])
```

- Rewrite the line np. sum (A [i] * $B[j]$) using np.inner.
- Write an equivalent program without loops in just a single line of code.

- Notice that $\mathbf{A}[\mathrm{i}]$ is the same thing as $\mathbf{A}[\mathbf{i},:]$. Use M.T to transpose a matrix M.

Task 5 - Practice Vectorization

Consider two arbitrary matrices \mathbf{A} and \mathbf{B} with the same number of columns, just like in task
4. We create the matrix \mathbf{C} by running

```
C = np.zeros((m,n))
for i in range(d):
    C += A[:,[i]] @ B[:,[i]].T
```

- What is the difference between $\mathbf{A}[:, i]$ and $\mathbf{A}[:,[i]]]$?
- Rewrite the expression $A[:,[i]]$ @ $[:,[i]] . T$ using np.outer.
- Write an equivalent program without loops in just a single line of code.

```
C =
```

