Lab Instructions - session 4

Linear Equations

Solving linear equations

Look at the code below.
solve_eq.py

```
import numpy as np
import timeit
N = 100
A = np.random.randn(N,N)
x = np.random.randn(N)
b = A @ x
x1 = np.linalg.solve(A,b)
x2 = np.linalg.inv(A)@ b
print('error1=', np.linalg.norm(x-x1))
print('error2=', np.linalg.norm(x-x2))
print('elapsed1=', timeit.timeit(lambda : np.linalg.solve(A,b), number=100))
print('elapsed2=', timeit.timeit(lambda : np.linalg.inv(A) @ b, number=100))
```

- What does the above do? Explain. (the function np.linalg. norm gives the length of a vector)
- Which method is more accurate? Using np.linalg.solve or using the inverse?
- Which method is faster?
- Set \mathbf{N} to a larger number and look at the results.
- Set the true x to a matrix $\mathbf{x}=n p$. random. randn (N,P) with $P=100$, so that b becomes a matrix of the same size. Which method is faster? Choose a larger P . What happens?

Task 1 - Purtub

In many real-world applications, we do not have access to the true vector of measurements $\mathbf{b}=\mathrm{A} \mathbf{x}$, but rather a perturbed version of it (noisy measurements). To simulate this scenario, we introduce noise by generating random perturbations and adding them to the calculated measurement vector:

```
noise = 0.001 * np.random.randn(N)
b = A @ x + noise
```

- solve the system of linear equations $\mathbf{A} \mathbf{x}=\mathbf{b}$ with the noisy version of \mathbf{b}. Observe how the perturbation affects the error.
- Double the size of the perturbation and see how the error changes. To have a fair comparison you need to solve with $b=A @ x+2 *$ noise with the same values of \mathbf{A}, \mathbf{x}, and noise (do not recreate them).

Task 2 - Singular case

Change the initial code (no noise added to b) such that \mathbf{A} is singular. Here is one way to do it.

```
A = np.random.randn(N,N)
A[:,N-1] = A[:,N-2]
```

- Why is A singular?
- What happens when you try to solve the equations?

Task 3 - Near-singular case

In many real-world scenarios, the matrix A may not be exactly singular, but rather near-singular. This means that the matrix is very close to a singular matrix (A singular matrix plus a small perturbation). Here we create such a scenario:

```
A = np.random.randn(N,N)
A[:,N-1] = A[:,N-2]
A += 0.00001 * np.random.randn(N,N)
```

- Compare the (order of) magnitude of the errors with the non-singular case. What happens as we bring A closer to a singular matrix (make 0.00001 smaller)?

Task 4 - The effect of perturbation in near-singular case

Repeat task 1 but this time with a near-singular matrix A. How does a small perturbation affect the error in a near-singular case?

Back to the Face Models

Remember the linear combination of faces from Lab 2 where you had to tune the scalars a, b, and c to reconstruct TargetFace2 as a linear combination of Face1, Face2, and Face3:

face1.py

```
import matplotlib.pyplot as plt
import numpy as np
from face_data import Face1, Face2, Face3, TargetFace2, edges
def plot_face(plt,X,edges,color='b'):
    "plots a face"
    plt.plot(X[:,0], X[:,1], 'o', color=color, markersize=3)
    for i,j in edges:
        xi = X[i,0]
        yi = X[i,1]
        xj = X[j,0]
        yj = X[j,1]
        # draw a line between X[i] and X[j]
        plt.plot((xi,xj), (yi,yj), '_', color=color)
    plt.axis('square')
    plt.xlim(-100,100)
    plt.ylim(-100,100)
# make a guess
a = 1/3.
b = 1/3.
c = 1/3.
Face = a * Face1 + b * Face2 + c * Face3
plot_face(plt, TargetFace2, edges, color='r')
plot_face(plt, Face, edges, color='g')
# change a,b,c until the two plots align
plt.show()
```

In Lab 2 we found a, b, and c by trial and error. Now, we find them analytically. To do this, first, vectorize the 68 by 2 face matrices to obtain 136-dimensional vectors:

```
face1 = Face1.ravel()
face2 = Face2.ravel()
face3 = Face3.ravel()
t = TargetFace2.ravel();
```

Then, arrange the face vectors as the columns of a 136 by 3 matrix F :

```
F = np.stack((face1, face2, face3), axis=1)
```

Let $\mathbf{x}=[\mathbf{a}, \mathbf{b}, \mathbf{c}]^{\top}$. The relation $\mathbf{F} \mathbf{x}=\mathbf{t}$ gives a system of 136 equations and 3 unknowns. Solving for \mathbf{x} gives the coefficients \mathbf{a}, \mathbf{b}, and \mathbf{c}.

Task 5

Choose the first 3 equations from the above to get a system of 3 equations and 3 unknowns. Solve the equations to find \mathbf{a}, \mathbf{b}, and \mathbf{c}.

task5.py

```
x = # solve the equations
a,b,c = x
Face = a * Face1 + b * Face2 + c * Face3
plot_face(plt, TargetFace2, edges, color='r')
plot_face(plt, Face, edges, color='g')
plt.show()
```


Task 6

Instead of choosing the first three equations from $\mathbf{F} \mathbf{x}=\mathbf{t}$, choose three random equations. You may use np. random. choice to select 3 indices without replacement.

task6.py

```
for i in range(5):
    inds = np.random.choice(range(136), 3, replace=False)
    # choose the equations
    a,b,c = # solve the equations
    Face = a * Face1 + b * Face2 + c * Face3
    plot_face(plt, TargetFace2, edges, color='r')
    plot_face(plt, Face, edges, color='g')
    plt.show()
```

- Does choosing a different set of equations affect the result?

Task 7 - Noisy measurements

Add a little Gaussian noise to the target face. This is similar to what we did in Task 1.

```
TargetFace2 += 3 * np.random.randn(*TargetFace2.shape)
```

Now, repeat Task 6. What happens?

- Do we get a face close to TargetFace2 in most iterations?
- Does the quality of the result depend on the choice of the 3 equations?
- Why do you think this happens?
- (Optional) Can you think of a better way to find the coefficients $\mathbf{a}, \mathbf{b}, \mathbf{c}$?

