Mathematics for AI

Lecture 12 Properties of Positive Definite Matrices, Cholesky Decomposition Introduction to Singular Value Decomposition

Reminder: Positive definite and positive
semi-definite matrices
Positive definite

$$A \in IR^{n \times n}$$
 is positive definite if $\forall x \in IR^{n} \times TA \times 0$
 $s \in D$ positive definite $A^{H} = \overline{A}^{T} = A$
 $A \in \mathbb{C}^{n \times n}$ is positive definite $A^{H} = \overline{A}^{T} = A$
 $\forall x \in R \notin [0] \quad \overline{x}^{T}A \times 0$
 $A \neq 0 \quad A$ is positive definite
 $A \neq 0$ A is positive semi-definite
 $A \neq 0$ A is positive semi-definite
 $A \neq 0$ A is positive semi-definite
 $A \neq 0$ A is positive semi-definite

Positive definite

Here, by positive-definite we mean symmetric positive definite

Positive definiteness and singularity

A is positive-definite $\Rightarrow A$ is non-singular proof: Assume A is singular $\Rightarrow \exists v \in \mathbb{R}^n \quad Av = \vec{0}$ $\forall \neq 0$ -> VTAV = 0 (jeiling

Positive definiteness and eigenvalues

U*U^T

 $A = UU^{T} \underset{k \neq v \in \mathbb{R}}{\overset{n \times p}{\Rightarrow}} \underset{k \to v \in \mathbb{R}}{\overset{n \times v \in \mathbb{R}}}$ $= \chi^T \chi = ||\chi||^2 > 0$ => UUT is always positive semi definite U= [u, u2-un] UUT= [Q] Q_- un] [u] + Un Un $= \sum u_k [i] u_k [j]$ UUT

 U^*U^T

full-ron-rank A= UV V full-column-rank => independent columns A=11' $x^{T}U^{T}U^{T}x = (Ux)^{T}(Vx)$ $X \neq 0$ 40=XX #1 = YTY >0 positive devinite Y=0 =>A

Correlation matrix

$$dato = D = \left\{\begin{array}{c} d_{1}^{T} \\ d_{2}^{T} \\ d_{3}^{T} \end{array}\right\} Correlation Matrix
C = \frac{1}{n} \sum_{n \neq 1}^{M} d_{1} d_{n}^{T} = \frac{1}{n} D^{T} D$$

$$D^{T} D = \left[d_{1} d_{2} - d_{M}\right] \left[\begin{array}{c} d_{1}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \end{array}\right] \left[\begin{array}{c} d_{1}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \end{array}\right] \left[\begin{array}{c} d_{1} d_{2}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \end{array}\right] \left[\begin{array}{c} d_{1} d_{2}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \\ d_{1}^{T} \end{array}\right] \left[\begin{array}{c} d_{1} d_{2}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \\ d_{1}^{T} \end{array}\right] \left[\begin{array}{c} d_{1} d_{2}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \\ d_{2}^{T} \\ d_{1}^{T} \\ d_{1}^{$$

Correlation matrix

Mxn (AdR) \Rightarrow rank(A) = n \Rightarrow A has full column rank

Covariance matrix

Decomposition

Every possitive definite matrix can be factorized as $A = U^T U$. $U \in IR^{n \times n}$ $A \in IR^{n \times n}$ for some

Square root

Every positive definite matrix can be factorized as $A = U^T U$. $U \in IR^{n \times n} A \in IR^{n \times n}$

For a (symmetric) positive semi-definite matrix A there is a unique positive semi-definite matrix P such that A = P P (= P^H P). P is called the square root of A and is denoted by $A^{-\frac{1}{2}}$.

Cholskey Decomposition

Cholskey Pecomposition Aelphin
Every possitive semi definite matrix can be
decomposed as
$$A = LL^T$$
 where L is to the
Lower-triangular.
 $A \in C^{h \times n}$ $A = LL^H = LL^*$.

Singular Value Decomposition (SVD)

M12/11 Singular Value Decomposition تجزيه مقادير شغرد Every matrix AEIR can be decomposed as A = $U \sum V^T$ mxn mxn mxn nxn U, V orthogonal & Z diagonal $U^T U = U^T = I$ $v^T V = v V^T = I$ $v^T V = v V^T = F$ $\begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma_4 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_4 & \sigma$

Singular Value Decomposition (SVD)

K. N. Toosi

Singular Value Decomposition (SVD)

Skinny SVD

Skinny SVD & Memory usage

[J 02 - 020]]=[U][[0. 02 20× 1000 000 20×20 000000 × 000000 full SVD E 4TR single precision floating point 01 52 A 20+20 numpy. linalg. svd (A, full-matrices = False) & SATA skinny SVD for float 1000 000 ×20 80MB for float 32

Geometric Interpretation

And the second s

SVD and matrix rank

$$\begin{bmatrix} A \\ = \begin{bmatrix} u_1 & u_2 & \cdots & u_m \\ \vdots & \vdots & \vdots \\ u_1 & u_2 & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 & \cdots & \sigma_r & \cdots & \sigma_r \\ \vdots & \sigma_r & \cdots & \sigma_r & \vdots \\ \vdots & \sigma_r & \cdots & \sigma_r & \vdots \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \cdots & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r & \sigma_r & \sigma_r \\ \vdots & \sigma_r & \sigma_r & \sigma_r$$

SVD, row space, column space, null space

rank(A) = # non-zero singular values ran 0,7027-70r>0 $\sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_{n} = 0$ $u_1, u_2, \dots u_r$: form a basis for C(A)VI, V2, ..., Vr form an orthonormal basis for C(AT) Vr+1, Vr+2,..., Vn form an . 1 basis for N(A) of A Ur.1.4 Urtl, urt2, ..., un form " basis for N(AT)

K. N. Toosi University of Technology

Compact SVD

V17 V2 = 41 42.48 Compact SVP

