Mathematics for AI

Lecture 12
Properties of Positive Definite Matrices, Cholesky Decomposition Introduction to Singular Value Decomposition

Reminder: Positive definite and positive semi-definite matrices

Positive definite
$A \in \mathbb{R}^{n \times n}$ is positive definite if $\forall x \in \mathbb{R}^{n} x^{\top} A \times 0>0$
sem positive semi-definite $\begin{aligned} & \quad \forall \varnothing \\ & \forall x \in \mathbb{R}^{n}\end{aligned} x^{\top} A x \geqslant 0$
$A \in \mathbb{C}^{n \times n}$ is positive definitel $A^{H}=\bar{A}^{\top}=A$
$\forall x \in x^{H}\{0\} \bar{x}^{\top} A x \geqslant 0$
$A \succ 0=A$ is positive definit
$A \geqslant 0 \quad A$ is positive semi-definite negative (semi) de finite $<\leqslant$,

Positive definite

Here, by positive-definite we mean symmetric positive definite

Positive definiteness and singularity
A is positive-definite $\Rightarrow A$ is non-singular proof:
Assume \qquad

$$
\begin{aligned}
& r \Rightarrow \exists V \in \mathbb{R}^{n} \quad A V=\overrightarrow{0} \\
& V \neq 0 \\
& \Rightarrow V^{\top} A V=0 \quad \mathcal{S}^{2} 2 i^{-}
\end{aligned}
$$

Positive definiteness and eigenvalues
A is positive-definite \Rightarrow all eigenvalues are (real and) positive.
A is positive-dsemi-definite \Rightarrow all eigenvalues are (real and) nonnegative
$U^{*} U^{\top}$

$$
\begin{aligned}
A=\bigcup_{n \times n} U_{n \times p} U^{\top} U \in \mathbb{R}^{n \times p} \Rightarrow x^{\top} A x & =\underline{x^{\top} U} U^{\top} x=\left(\frac{U^{\top} x}{y}\right)^{\top} \frac{U^{\top} x}{y} \\
& =y^{\top} y
\end{aligned}
$$

$\Rightarrow U U^{\top}$ ir always positive semi definite

$$
\begin{aligned}
& \left.\vec{U}=\left[\begin{array}{lll}
u_{1} & u_{2} & \cdots \\
u_{n}
\end{array}\right] \quad U U^{\top}=\left[\begin{array}{lll}
a_{1} & u_{2} & a_{2}
\end{array}\right] u_{n}\right]\left[\begin{array}{l}
u_{n}
\end{array}\right] \\
& \left.=u_{1} u_{1}^{\top}+u_{2} u_{2}^{\top}+\cdots+u_{n} u_{n}^{\top}\right] \\
& \left(U U^{\top} \alpha\right)_{i j}=\sum_{k} u_{k}[i] u_{k}[j]
\end{aligned}
$$

$U^{*} U^{\top}$
$A=U U^{\top} \quad U$ Pull-ran-rank
$A=U^{\top} U \quad U$ full -coumn-rank \Rightarrow independent columns
$x \neq 0$

$$
x^{\top} U^{\top} U x=
$$

$$
\left(u_{x}\right)^{\top}\left(\frac{u_{x}}{y \neq 0}\right.
$$

$y \neq 0 \Rightarrow A$ positive definite

Correlation matrix

$$
\text { data }=D=\left\{\begin{array}{lc}
d_{1}^{\top} \top & \text { Correlation Matrix } \\
d_{d}^{\top} & \\
d_{3}^{\top} & C=\frac{1}{M} \sum_{i=1}^{M} \\
d_{n}^{\top} & \frac{d_{i} d_{i}^{\top}}{n \times n}=\frac{1}{n} D^{\top} D
\end{array}\right.
$$

$$
D^{\top} D=\left[\begin{array}{lll}
d_{1} & d_{2} & \cdots
\end{array} d_{M}\right]\left[\begin{array}{c}
d_{1}^{\top} \\
d_{2}^{\top} \\
\vdots \\
d_{M}^{\top}
\end{array}\right]
$$

$$
d_{i}^{T}=\left[\begin{array}{lll}
x_{i} & y_{i} & z_{i}
\end{array}\right] \quad \operatorname{corr}(x, y)=\frac{1}{M} \sum_{i=1}^{M} x_{i} y_{i}
$$

Correlation matrix

$$
\|A x\|>0 \quad \text { for all } \quad x \neq 0
$$

\Leftrightarrow for all $x \neq 0$ we have $A x \neq 0$
$\left(A \in \mathbb{R}^{M \times n} \Leftrightarrow \operatorname{rank}(A)=n \Leftrightarrow A\right.$ has full column rank

$$
M[
$$

Covariance matrix

Decomposition

Every positive semi definite matrix can be factorized as $A=U^{\top} U \quad U \in \mathbb{R}^{n \times n} \quad A \in \mathbb{R}^{n \times n}$

Square root
Every positive semi definite matrix can be factorized as $A=U^{\top} U \quad U \in \mathbb{R}^{n \times n} \quad A \in \mathbb{R}^{n \times n}$

For a (symmetric) positive semi-definite matrix A there is a unique positive semi-definite matrix P such that $A=P P$ (= $P^{H} P$). P is called the square root of A and is denoted by $A^{-\frac{1}{2}}$.

Cholskey Decomposition

Cholskey Decomposition
Every positive semi definite matrix y can be decomposed as $A=L^{\top}$ where L is $A \in \mathbb{C}^{n \times n} \quad A=L L^{H}=L L^{*}$. Lower-triangalar.

Singular Value Decomposition (SVD)
Singular Value Decomposition
Every matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as

$$
A=U \sum_{m \times n} \sum_{m \times n} V_{{ }_{m \times n}}^{\top}
$$

U, V orthogonal \& \sum diagonal

$$
\begin{aligned}
& U^{\top} U=W^{\top}=I \\
& v^{\top} v=W^{\top}=I
\end{aligned}
$$

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a_{1} & u_{2} & u_{3} & u_{4} \\
u_{3} & u_{3}
\end{array}\right]\left[\begin{array}{lll}
5 & 5 & 5
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & 0 & 0 \\
0_{1} & \sigma_{2} & 0 \\
0 & \sigma_{3} \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\top} \\
v_{2}^{\top} \\
v_{3}^{\top}
\end{array}\right]}
\end{aligned}
$$

Singular Value Decomposition (SVD)

$u_{1}, u_{2}, \ldots, u_{m}$: left singnlar vectors $\left\\|u_{i}\right\\|=1$ $v_{1}, v_{2}, \ldots, v_{n}$: right singular vectors $\left\\|v_{i}\right\\|=1$ $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$: singular values.

Skinny SVD

$$
\begin{aligned}
& \left.\begin{array}{r}
\text { full-matrices }=\text { False } \rightarrow \text { skinnt } \\
\text { A } \\
\text { A }
\end{array}\right]=[U]_{m \times n}\left[\sum_{m \times n}\right]\left[V^{\top}\right]_{m \times n} \text { full svd } \\
& \text {. } m \text {. } \\
& {\left[\begin{array}{ll}
u_{1} u_{2} & u_{m}
\end{array}\right]\left[\begin{array}{ccc}
m \times m \\
\sigma_{1} & 0 & 0 \\
1 & \sigma_{2} & 8 \\
0 & 0 & \sigma_{m}
\end{array}\right]\left[\begin{array}{c}
n \times n \\
0 \\
v T \\
v_{2} T \\
v_{2} T \\
\\
v_{n}
\end{array}\right]} \\
& \underset{m \times m}{\left[\begin{array}{ll}
u_{1} & u_{2}-u_{m}
\end{array}\right]} \underset{m \times m}{ }\left[\begin{array}{ccc}
\sigma_{1} & \\
& \sigma_{2} & \\
\sigma_{2} & \sigma_{m}
\end{array}\right]\left[\begin{array}{c}
v_{n}^{\top} \\
v_{1}^{\top} T \\
v_{2} \\
v_{m}^{\top} \\
v_{m}^{\top}
\end{array}\right] \underset{s v D}{\operatorname{skinny}}
\end{aligned}
$$

Skinny SVD \& Memory usage

Geometric Interpretation

SVD and matrix rank

$$
\begin{aligned}
& \operatorname{rank}(A)=\# \text { nonzero singular values }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{1}>\sigma_{2}>\cdots>\sigma_{r}>0 \quad \text { ran } \\
& \sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_{n}=0
\end{aligned}
$$

$\min (m, n)$

SVD, row space, column space, null space

$$
\begin{aligned}
& \operatorname{rank}(A)=\# \text { nonzero singular values }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{1}>\sigma_{2}>\cdots>\sigma_{r}>0 \quad \text { ran } \\
& \sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_{n}=0
\end{aligned}
$$

$u_{1}, u_{2}, \ldots u_{r}$: form a basis for $C(A)$
$v_{1}, v_{2}, \ldots, v_{r}$ form an orthonormal
row-spacs
$v_{r+1}, v_{r+2}, \ldots, v_{n}$ form an ". basis for $N(A) \circ \circ A$
$u_{r+1}, u_{r+2}, \ldots, u_{m}$ form ". "basis for $N\left(A^{\top}\right)$

Unrolling SVD

$$
\begin{aligned}
{[A] } & =\left[\begin{array}{lll}
u_{1} & u_{2} & \ldots \\
u_{m}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & \\
\sigma_{i} \\
{ }_{o} & o_{0}
\end{array}\right]\left[\begin{array}{l}
\text { left null space } A \\
v_{1}^{\top} \\
v_{2}^{\top} \\
v_{n}^{\top}
\end{array}\right]^{\prime} \\
& =\sum_{i=1} \sigma_{i} u_{i} v_{i}^{\top}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
\end{aligned}
$$

Compact SVD

$$
\begin{aligned}
& =\sum_{i=1}^{\min (m, n)} \sigma_{i} u_{i} v_{i}^{\top}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
\end{aligned}
$$

$$
[A]=\left[u_{1} u_{2} \cdot u_{r}\right]\left[\begin{array}{lll}
{\left[\begin{array}{ll}
\sigma_{1} & \\
& \sigma_{2} \\
& \\
& \sigma_{r}
\end{array}\right]\left[\begin{array}{cc}
v_{1}^{\top} \tau \\
v_{2} \\
v_{r} T
\end{array}\right]} \\
\text { compact SVD }
\end{array}\right.
$$

