## Mathematics for AI

Lecture 13
SVD, Matrix Norm, Low-rank approximation

Remember Square root of positive semi-definite matrices
For a (symmetric) positive semi-definite matrix $A$ there is a unique positive semi-definite matrix $P$ such that $A=P P(=P H P) . P$ is called the square root of

$$
A=B B=(-B)(-B)
$$

$$
\text { A, positive semi definite } \quad x^{x^{\top} A x \geqslant 0 \quad \forall x}
$$

symmetric $\left(A^{*}=A\right) \quad A^{A}$
$A=B B=B^{2}$ s such tathat $B$ is
positive semi-definite
$A=B B=B^{*} B$
$\frac{B \text { is unique }}{B-B^{*}}$

Remember: SVD

$$
\begin{aligned}
& A=U \sum_{m \times n} V_{n \times n}^{\top} \quad \frac{U^{\top} U=V U^{\top}=F}{V^{\top} V=V V^{\top}=I} \\
& \Sigma=\left[\sigma_{\sigma_{2},}\right] \quad \sigma \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma \geqslant 0, \sum \text { diagonal } \\
& \Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \sigma_{2}, & \\
& & \sigma_{n}
\end{array}\right] \quad \sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{\min (m, n)} \geqslant \sigma_{0} \sum\left[\sigma_{1}\right] \\
& U=\left[\begin{array}{ll}
u_{1} u_{2} & u_{m} \\
\text { min }(m, n)
\end{array}\right] \quad V=\left[\begin{array}{lll}
v_{1} & v_{2} & \cdots
\end{array} v_{n}\right] \quad \Sigma=\left[\begin{array}{c}
\sigma_{1 \sigma_{2}} \\
\sigma_{j}
\end{array}\right] \\
& A=\sum_{i=1}^{\min (m, n)} \sigma_{i} \underbrace{\vec{u}_{i} \vec{v}_{i}^{\top}}_{m \times n}
\end{aligned}
$$

SVD and Eigen-decomposition

$$
\begin{aligned}
& A=U \Sigma V^{\top} \\
& A^{\top} A=V \Sigma^{\top} U^{\top} U \Sigma V^{\top}=
\end{aligned}
$$

$$
\begin{aligned}
& A^{\top} A=V\left[\begin{array}{ccc}
\sigma^{2} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 2 \\
0 & 0 & \sigma
\end{array}\right] V^{\top} \\
& V^{\top}=V^{-1} \Rightarrow\left(A^{\top} A\right) V=V^{\top}\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{2}^{2} \\
& \sigma_{3}^{2}
\end{array}\right] \\
& \left(A^{\top} A\right)\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1}^{2} & \sigma_{2}^{2} \\
\sigma_{2}^{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
a_{1}^{2} r_{1}^{2} & a_{1}^{2} v_{2} & \sigma_{9}^{3} v_{3}
\end{array}\right] \\
& \left(A^{\top} A\right) V_{i}=\sigma_{i}^{2} V_{i} \\
& \left(\sigma_{i}, v_{i}\right) \text { are eigen pairs of } A^{\top} A
\end{aligned}
$$

Remember: SVD, rank, column-, row-, and null spaces

Near-low-rank matrices


Remember: vector norm

* vector norm

II: II

$$
V \rightarrow \mathbb{R}^{+}
$$

$$
[0, \infty)
$$

$$
\begin{aligned}
& \|\vec{v}\| \geqslant 0 \\
& \|\vec{v}\|=\overrightarrow{0} \Longleftrightarrow \vec{v}=\overrightarrow{0}
\end{aligned}
$$

$$
\|\alpha \vec{V}\|=|\alpha|\|\vec{V}\|
$$

$\|\vec{u}+\vec{v}\| \leqslant\|\vec{u}\|+\|v\| \quad$ triangle inequality

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

$$
\begin{aligned}
\|x\| & =\|x\|_{2} \quad L^{2}-\operatorname{norm} \\
& =\sqrt{x_{1}^{2}+n_{2}^{2}+\cdots+n_{n}^{2}} \\
\|x\|_{1} & =\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \\
\|x\|_{p} & =\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{0 / p} \\
\|x\|_{\infty} & =\max ^{1 / p}\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)^{p-n o r m}
\end{aligned}
$$

Matrix Norm

$$
\begin{aligned}
& A \in \mathbb{R}_{\text {matrix }}^{m \times n} \quad\|\cdot\| \quad R^{m \times n} \rightarrow \mathbb{R}^{+} \quad M A B \\
& \|A\| \geqslant 0 \\
& \|A\|=0 \Leftrightarrow A=0 \in \mathbb{R}_{\text {man }}^{m \times n} \\
& \|\alpha A\|=|\alpha|\|A\| \\
& \|A+B\| \leqslant\|A\|+\|B\| \\
& \|A B\| \leqslant\|A\|\|B\| \rightarrow \begin{array}{c}
\text { sub-multiplicative } \\
\text { norm }
\end{array}
\end{aligned}
$$

Elementwise norms, Forbenius norm

$$
\begin{aligned}
& \text { element-wise vorms } \\
& \operatorname{vect}(A) \\
& \|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(A_{i j}\right)^{2}} \\
& \begin{array}{l}
=\sqrt{\sum_{i=1}^{\min (m, n)} \sigma_{i}^{2}} \quad \text { np.linalg. } \operatorname{norm}(A, \text { 'fro' }) \\
\text { Singular values }
\end{array}
\end{aligned}
$$

Operator norm

$$
\frac{\text { operator norm }}{\|A \times\|_{\text {nom }}}=\max \frac{\max }{\| \|_{\text {nom 2 } 2}}\{|A \times\|\mid\| x \|=1\}
$$

Spectral Norm

$$
\max _{x} \frac{\|A x\|_{2}}{\|x\|_{2}} \begin{gathered}
\|A\| \|
\end{gathered}
$$

$L_{p, q}$ Norms

$$
\|A\|_{p, q}=\|\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}-\left(a_{n}\right]_{p, \gamma}\left\|_{p}=\right\|\left[\begin{array}{l}
\left\|a_{1}\right\|_{p} \\
\left\|a_{2}\right\|_{p} \\
\left\|a_{p}\right\|_{p}
\end{array}\right]| |_{q}\right.
$$

Nuclear norm (trace norm)

$$
\begin{aligned}
& \|A\|_{*}=\sum_{i=1}^{\min (m, n)} \sigma_{i}=\left\|\left[\begin{array}{l}
\theta_{1}^{1} \\
\sigma_{2} \\
i \\
\sigma
\end{array}\right]\right\|_{1} \\
& \text { nuclear norm } \\
& \text { trace norm } \\
& =\operatorname{traca}\left[\left(A^{\top} A\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

## Matrix norm

Look at the wikipedia article
https://en.wikipedia.org/wiki/Matrix norm

Low-rank approximation
find closest matrix to $A \in \mathbb{R}^{m \times n}$ whose rank is $r$.

$$
\begin{aligned}
& \hat{A}=\underset{B \in R^{m \times n}}{\operatorname{argmin}} A-B \| \text { subject } \operatorname{rank}(B)=r \\
& \text { low-rank estimation }
\end{aligned}
$$

Eckart-Young-Mirsky theorem
Eckart Young Miroky
$\left\|\left\|_{F}\right\|\right\|_{2}$ spect-

$$
\begin{aligned}
& A=U\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \sigma_{\text {min }}(n, n)
\end{array}\right] V^{\top}
\end{aligned}
$$

