Mathematics for AI

Lecture 16

The gradient vector

The gradient and steepest directions

$$
\nabla=\left[\begin{array}{c}
\frac{\partial f}{\partial n_{1}} \\
\frac{\partial f}{\partial n_{2}} \\
\vdots f \\
\frac{\partial f}{\partial n_{n}}
\end{array}\right]
$$

$u_{\text {max }}=\arg \max _{u} D[u] f\left(x_{0}\right)$ subject to $\|u\|=1$

$$
u_{\min }=\arg \min _{u} D[u] f\left(x_{0}\right)
$$

f: diffrentar

$$
\begin{aligned}
& \text { f: diffrentax } \\
& \left.u_{\max }=\operatorname{argmax} u, \nabla\right\rangle=\frac{\nabla}{\|\nabla\|} \\
& u_{\text {min }}=\underset{u}{\arg \min _{u}}\langle u, \nabla\rangle=-\frac{\nabla}{\|\nabla\|} \dot{u}_{u_{\text {min }}}
\end{aligned}
$$

Moving perpendicular to gradient

$$
D[u] f(x)=0 \Rightarrow\langle u, \nabla\rangle=0 \Rightarrow u \perp \nabla\rangle \frac{k_{n}}{u}
$$

Example

$$
\begin{aligned}
& \left.f(x)=f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=x_{1} x_{2}+x_{3} \sin x_{2}+x_{1} x_{2} e^{n_{3}} \\
& \mathbb{R}^{3} \rightarrow \mathbb{R}=\left[\begin{array}{l}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{x_{2}} \\
\frac{\partial f}{x_{3}}
\end{array}\right]=\left[\begin{array}{l}
x_{2}+x_{2} e^{x_{3}}+ \\
x_{1}+x_{3} \cos x_{2}+x_{1} \\
\sin x_{2}+x_{1} x_{2} e^{x_{3}}
\end{array}\right] \in \mathbb{R}^{3}
\end{aligned}
$$

Definition of differentiability
LA 16 (II)

$$
f\left(x_{0}\right)+\vec{m}^{\top}\left(x-x_{0}\right)
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x_{0} \Rightarrow \exists \vec{m} \in \mathbb{R}^{n}$

$$
\lim _{\vec{h} \rightarrow 0} \frac{f\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\left(\vec{m}^{\top} h\right.}{\|\vec{h}\|}=0
$$

Limits in higher dimensions

$$
\begin{array}{ll}
\log & g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
\lim _{\vec{x} \rightarrow \vec{x}_{0}} g(\vec{x})=\vec{y}_{0} \quad \forall \varepsilon \quad \exists \delta \quad\left\|x-x_{0}\right\|<\delta \Rightarrow| | g(x)-\vec{y}_{0}| |<\varepsilon
\end{array}
$$

Example

$$
\begin{aligned}
& x \rightarrow x_{0} \\
& \operatorname{Ar} \mathbb{R}^{n x n} \quad x \in \mathbb{R}^{n} \quad \operatorname{Diag}(x)=\left[\begin{array}{llll}
x_{1} & & \\
& x_{2} & \\
& & \\
& & & \\
& & x_{n}
\end{array}\right] \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$ constant vectors $u, v \in \mathbb{R}^{n}$.

$$
\left.\begin{array}{rl}
\text { constant vectors } & u, v \in \mathbb{R}^{h} \\
u^{\top} \operatorname{Diag}(x) v= & 0 \\
u_{1} & u_{2}
\end{array} \quad u_{n}\right]\left[\begin{array}{lll}
x_{1} & & \varnothing \\
x_{2} & \\
O & n_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} \cdot u_{i} \cdot v_{i} .
$$

Hadamard Product

Hadamard product (element-wise product)
LAl6 III

$$
u \circ v=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \odot\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{cc}
u_{1} & v_{1} \\
u_{2} & v_{2} \\
u_{n} & v_{n}
\end{array}\right]=\underbrace{\operatorname{Diag}(u) v}_{n \times n}=\eta_{\operatorname{rag}}(v) u
$$

Example
$f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad f(x)=x^{\top} A x$ for a constant
matrix $A \in \mathbb{R}^{n \times n}$.

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{i j} \\
& \frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}\right) \\
& \frac{\partial}{\partial x_{k}}(a_{k k} \underbrace{x_{k} x_{k}}_{x_{k}^{2}}+\underset{\substack{j=1 \\
j \neq k}}{n} a_{k j} x_{k} x_{j}+\sum_{\substack{i=1 \\
i \neq k}}^{n} a_{i k} x_{i} x_{k} k+\sum_{\substack{i=1 \\
i \neq k}}^{n} \sum_{j=1}^{n} a_{i j}+x_{i} x_{i} x_{j}) \\
& =2 a_{k k} x_{k}+\sum_{\substack{j=1 \\
j \neq k}}^{n} a_{k j} x_{j}+\sum_{\substack{i=1 \\
i \neq k}}^{n} a_{i k} x_{i}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad x \mapsto x^{\top} A x \\
& \nabla f=(\underbrace{A+A^{\top}}_{n \times n}) \underset{n x}{x} \in \mathbb{R}^{n}
\end{aligned}
$$

A symmetric $\Rightarrow \nabla f=2 A x$

Example: Least Squares
least squares problem $A x=b, A \in \mathbb{R}^{m \times n}$

$$
[A][x]=[b]
$$

$$
m \geqslant n
$$

A has full column rank

$$
\operatorname{rank}(A)=n
$$

least squares problem geometricimethod

$$
\begin{aligned}
& x^{*}=\operatorname{argmin}\|A x-b\|^{2} \Longrightarrow x=\left(A^{\top} A\right)^{-1} A^{\top} b \\
& \begin{aligned}
& f(x)=\|A x-b\|^{2} \quad \nabla f=0 \Rightarrow x=V . \\
& f(x)=\|\left[\begin{array}{l}
a_{1}^{\top} x-b_{1} \\
a_{2}^{\top} T x-b_{2} \\
a_{n}^{\top} x-b_{n}
\end{array}\right]=\sum_{i=1}^{n}\left(a_{i=1}^{\top} x-b_{i}\right)^{2} . \\
&=\sum_{i=1}^{n}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2}
\end{aligned}
\end{aligned}
$$

Example: Least Squares

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2} \\
& =\sum_{i=1}^{n} 2 a_{i k}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+x_{i n} x_{n=}^{n_{i}}\right) \\
& =2 \sum_{i=1}^{n} a_{i k}\left(a_{i:}^{\top} x-b_{i}\right) \\
& \frac{\partial f}{\partial n_{k}}=2\left[\begin{array}{lll}
a_{1 k} & a_{2 k} & -a_{n k}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{\top} x-b_{i} \\
a_{2}^{T} T x-b_{2} \\
\vdots \\
a_{n}^{\top} x-b_{n}
\end{array}\right]=2 a_{: k}^{\top}(A x-b) \\
& \nabla=\left[\begin{array}{c}
\frac{\partial f}{\partial n_{1}} \\
\frac{\partial f}{x_{2}} \\
\partial \neq \frac{1}{2 n n}
\end{array}\right]=2\left[\begin{array}{cc}
a: 1 \\
a & a_{i 2}^{\top} \\
& a_{: n}^{\top}
\end{array}\right](A x-b)=2 A^{\top}(A x-b)
\end{aligned}
$$

Example: Least Squares

$$
\begin{aligned}
\nabla f=\overrightarrow{0} & \Rightarrow 2 A^{\top}(A x-b)=\overrightarrow{0} \\
& \Rightarrow A^{\top} A x-A^{\top} b=0 \Rightarrow A^{\top} A x=A^{\top} b \\
& x=\left(A^{\top} A\right)^{-1} A^{\top} b
\end{aligned}
$$

least squares solution

Easier method of calculating gradient

$$
f(x) \quad D[u] f=\langle\nabla, u\rangle=\nabla^{\top} u
$$

1 - derive the directional derivative of $\underset{f}{f}$ for an arbitrary direction $u \in \mathbb{R}^{h}$.
2- write the solution in form of $\langle z, u\rangle$
$3-2$ is the gradient vector.

Inner product

$$
\langle A x, y\rangle \begin{gathered}
x \in R^{m} \\
y \in \mathbb{N}^{n} \\
A \in \mathbb{R}^{n \times m}
\end{gathered}\langle A x, y\rangle=\left\langle x, A^{\top} y\right\rangle
$$

Inner product for matrices

$$
\begin{aligned}
& A \in \mathbb{R} \\
& \langle A, B\rangle \quad A, B \in \mathbb{R}^{m \times n} \text { Matrix prod } \\
& \langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j} \\
& \langle A, B\rangle=\operatorname{trace}\left(A^{\top} B\right)=\operatorname{trace}\left(A B^{\top}\right) \\
& \langle A, B C\rangle=\left\langle B^{\top} A, C\right\rangle=\left\langle A C^{\top}, B\right\rangle
\end{aligned}
$$

Compute gradient (easy way)

$$
\left.\left.\begin{array}{l}
f(x)=x^{\top} A x \\
D[u] f=\left.\frac{d}{d \alpha} f(x+\alpha u)\right|_{\alpha=0}=\frac{d}{d \alpha}(\vec{x}+\alpha \vec{u})^{\top} A(x+\alpha u) \\
{\left[\frac{d}{d \alpha}(x+\alpha u)\right]^{\top} A(x+\alpha u)+(x+\alpha u)^{\top} A\left[\frac{d}{d \alpha}(x+\alpha u)\right]} \\
u^{\top} A(x+\alpha u)+\left.(x+\alpha u)^{\top} A u\right|_{\alpha=0} ^{\Rightarrow} \overrightarrow{u^{\top} A x+\alpha x^{\top} A u} \\
=x^{\top} A^{\top} u+x^{\top} A u=\left(x^{\top} A^{\top}+x^{\top} A\right) u=\left(A x+A^{\top} x\right)^{\top} u= \\
=\left(A x+A^{\top} x\right)^{\top} u \Rightarrow\left\langle A x A A^{\top} x\right.
\end{array}, u\right\rangle\right)
$$

Compute Gradient (easy way) least squares

$$
\begin{aligned}
& f(x)=\|A x-b\|^{2}=(A x-b)^{\top}(A x-b) \\
& \begin{aligned}
\frac{d}{d \alpha} f(x+\alpha u) & =\left.\frac{d}{d \alpha}(A(x+\alpha u)-b)^{\top}(A(x+\alpha u)-b)\right|_{\alpha=0} \\
& =(A u)^{\top}\left(A(x+\alpha u)^{\top}\right)+\left.(A(x+\alpha u)-b)^{\top}(A u)\right|_{\alpha=0} \\
& =(A u)^{\top}(A x b)+(A x-b)^{\top} A u \\
& =2(A x-b)^{\top} A u=\left(2 A^{\top}(A x-b)\right)^{\top} u \\
& =\left\langle 2 A^{\top}(A x-b), u\right\rangle \\
\nabla & =2 A^{\top}(A x-b)
\end{aligned}
\end{aligned}
$$

