Mathematics for AI

Lecture 17

functions of matrices, linear regression, vector valued multivariate functions, Jacobian

Functions on matrices

$$
\begin{aligned}
& f: \mathbb{R}^{m \times n} \xrightarrow{\longrightarrow} \mathbb{R} \quad \nabla_{f} \in \mathbb{R}^{m \times n} \\
& f(A)=\operatorname{det}(A) \quad f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{n} \\
& \left.\left.\begin{array}{l}
f(A)=\operatorname{trace}(A) \\
f, \mathbb{R}_{1} \times n \\
f(A)=f\left(\left[\begin{array}{l}
a_{11} \\
a_{12}
\end{array} \cdots a_{1 n}\right.\right. \\
a_{21} \\
a_{22}
\end{array}-a_{2 n}, \begin{array}{lll}
a_{m 1} & a_{m 2} & a_{m n}
\end{array}\right]\right) \quad \nabla_{f}=\left[\begin{array}{lll}
\frac{\partial f}{\partial a_{11}} & \frac{\partial f}{\partial a_{12}}-\frac{\partial f}{\partial a_{1 n}} \\
\frac{\partial f}{\partial a_{m 1}} & \frac{\partial f}{\partial m_{m 2}}-\frac{\partial f}{\partial a_{m n}}
\end{array}\right]
\end{aligned}
$$

Functions on matrices, Example

$$
\begin{aligned}
& f(A) f: \mathbb{R}^{n \times n} \longrightarrow \mid \mathbb{R}^{10} \quad A \longmapsto \operatorname{tantrace}(A) \\
& f(A)=\operatorname{trace}(A)=a_{11}+a_{22}+\cdots+a_{n n} \\
& \nabla_{f}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Functions on matrices, Example 2

$$
\begin{aligned}
& \left.\begin{array}{rl}
f: \mathbb{R}^{m \times n} \xrightarrow[R]{ } \quad f(A) & =u^{\top} A V^{T} u \in \mathbb{R}^{m} \quad A \\
U & \in \mathbb{R}^{m \times n} \text { direction } \\
& =\sum^{m} \sum^{n} a_{i j} u_{i} v_{j} v \in \mathbb{R}^{n}
\end{array}\right\} \text { constant } \\
& \nabla_{f}=\left.\frac{d}{d \alpha} f(A+\alpha U)\right|_{\alpha=0}=\left.\frac{d}{d \alpha} \cdot u^{\top}(A+\alpha U) v\right|_{\alpha=0} \\
& =u^{\top} U v=\left\langle\nabla, V_{m}, U_{m \times n}\right\rangle \\
& u^{\top} U_{v}=u^{\top}\left(U_{v}\right)=\left\langle u, U_{v}\right\rangle=\left\langle u v^{\top}, u\right\rangle \\
& \left.\nabla=\frac{u}{\langle m \times 1} V^{\top}\right\}_{1 \times n} \in \mathbb{R}^{m \times n}
\end{aligned}
$$

Linear Regression

$$
\begin{aligned}
& x \underset{R^{n}}{\rightleftarrows} \underset{\sim}{\rightleftarrows} y \in \mathbb{R}^{m} \\
& y=f(x)=A x+b \in \mathbb{R}^{m} \\
& \stackrel{\downarrow}{\in \mathbb{R}^{m \times n}} \in \mathbb{R}^{m} \\
& \left(\vec{x}_{1}, \vec{y}_{1}\right),\left(\underline{x}_{2}, y_{2}\right), \ldots,\left(x_{p}, y_{p}\right) \quad f(x ; A, p) \\
& \mathbb{R}^{n} \mathbb{R}^{m} \\
& A \times x_{i} \propto y_{i} A x_{i}+b \simeq y_{i} \\
& A x_{i}+\vec{b}-\vec{Y}_{i} \in \mathbb{R}^{m} \\
& \left\|A x_{1}+b-y_{1}\right\|^{2}+\left\|A x_{2}+b-y_{2}\right\|^{2}+\cdots+\left\|A x_{p}+b-y_{p}\right\|^{2}
\end{aligned}
$$

$\begin{aligned} C(A) & =C(A, b)=\sum_{i=1}^{p}\left\|A x_{i}+b-y_{i}\right\|^{2} \text { cost function } \\ A & =(A, b)\end{aligned}$

$$
\begin{aligned}
& A^{*}, b^{*}=\operatorname{argmin} C(A, b) \\
& C: \mathbb{R}^{m \times n} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}
\end{aligned}
$$

Linear Regression
$\frac{\partial c^{\top}}{\partial b} \rightarrow$ gradient w.r.to b

$$
\begin{aligned}
& \nabla_{f=0}^{b}=\frac{\partial c}{\partial b}=\sum_{i=1}^{p} \frac{\partial}{\partial b}\left\|A x_{i}+b-y_{i}\right\|^{2}=\sum_{i=1}^{p} \frac{\partial}{\partial b}\left(A x_{i}-y_{i}+b\right)^{\top}\left(A x_{x} y_{i}+\right)^{2} \\
& =\sum_{i=1}^{p} 2\left(A x_{i}-y_{i}+b\right)=D \\
& \Rightarrow A \sum x_{i}-\sum y_{i}+\dot{p} b=0 \Rightarrow \dot{b}^{*}=-A \frac{1}{\frac{1}{p} \sum_{i=1}^{p} x_{i}} \frac{1}{\mu_{x}}+\frac{1}{p} \frac{\sum y_{i}}{\mu_{y}} \\
& b^{*}=-A \mu_{x}+\mu_{y} \\
& C(A, b)=\sum_{i=1}^{p}\left\|A x_{i}-y_{i}+b\right\|^{2}=\sum_{i=1}^{p}\left\|A x_{i}-y_{i}-A \mu_{x}+\mu_{y}\right\|^{2} \\
& =\sum_{i=1}^{p}\left\|A\left(x_{i}-\mu_{x}\right)-\frac{\left(y_{i}-\mu_{y}\right)}{y_{i}}\right\|^{2}=\sum_{i=1}^{p}\left\|A \bar{x}_{i} \cdot \bar{y}_{i}\right\|^{2}=C^{\prime}(A) \\
& C^{\prime}: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R} \quad \frac{\partial C^{\prime}(A)}{\partial A}=\nabla_{C^{\prime}}^{A}=0
\end{aligned}
$$

Linear Regression

$$
\begin{aligned}
& C^{\prime}(A)=\sum_{i=1}^{p}\left\|A \bar{x}_{i} \cdot-\bar{y}_{i}\right\|^{2} \\
& =\sum_{i=1}^{p}\left(A \bar{x}_{i}-\bar{y}_{i}\right)^{\top}\left(A x_{i}-y_{i}\right) \\
& \left.\frac{d}{d \alpha} \sum_{i=1}^{p}\left((A+a V) x_{i}-y_{i}\right)^{\top}(A+\alpha V) x_{1}-y_{i}\right)\left.\right|_{\alpha=0} \\
& =2 \sum_{i=1}^{p}\left(U x_{i}\right)\left(A x_{i}-y_{i}\right) \\
& =2 \sum_{i=1}^{p}\left\langle U x_{i}, A x_{i}-y_{i}\right\rangle \\
& =2 \sum_{i=1}^{p}\langle U,(A \underbrace{x_{i}-y_{i}}_{m i}) \underbrace{x_{i}^{\top}}_{\text {inear }}\rangle \\
& \begin{array}{l}
\stackrel{N}{=}\left\langle U, 2 \sum_{i=1}^{p}\left(A x_{i}-y_{i}\right) x_{i}^{m \times n}\right\rangle \\
\nabla_{C^{\prime}}^{A}=\frac{\partial C^{\prime}}{\partial A} \in \mathbb{R}^{m \times n}
\end{array}
\end{aligned}
$$

Linear Regression

$$
\begin{aligned}
& \begin{array}{l}
\xlongequal{\$}\left\langle U, 2 \sum_{i=1}^{p}\left(A x_{i}-y_{i}\right) x_{i}^{\top \times n}\right\rangle \\
\nabla_{C^{\prime}}^{A}=\frac{\partial C^{\prime}}{\partial A} \in \mathbb{R}^{m \times n}
\end{array} \\
& \nabla=2 \sum_{i=1}^{P} A \frac{x_{i}}{\operatorname{man}} \frac{x_{i}^{\top}}{\frac{1}{1 \times n}}-y_{m \times 1} x_{i}^{\top}=2 A \sum_{\sum_{i=1}^{P}}^{X_{i}} x_{i} x_{i}^{\top}-2 \sum_{\sum_{i=1}^{P} y_{i} x_{i}^{\top}}^{Y x^{\top}} \\
& X=\left[x_{1}, x_{2}, \ldots, x_{p}\right]^{n \times p}, Y=\left[y_{1}, y_{2}, \ldots, y_{p}\right] \in \mathbb{R}^{m \times p} \\
& \nabla=2 A X X^{\top}-2 Y X^{\top} \quad \nabla=0 \Rightarrow A_{\text {op }}=Y X^{\top}\left(X X^{\top}\right)^{-1} \\
& =\left(\sum_{i=1}^{p} y_{i} x_{i}^{\top}\right)\left(\sum_{i=1}^{p} x_{i} x_{i}^{\top}\right)^{-} \\
& X X^{\top} \begin{array}{c}
\text { invertible } \\
\text { non-singular }
\end{array} \Longleftrightarrow X \text { full row } \operatorname{ran} k \Rightarrow \operatorname{rank}(X)=m \\
& \Rightarrow \exists \mathrm{~m} \text { independent columns } \Rightarrow \operatorname{span}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{m} \\
& A=
\end{aligned}
$$

Linearization

$$
\begin{aligned}
& f(x) \rightarrow \text { imearize around } x_{0} \\
& f(x) \simeq f\left(x_{0}\right)+\nabla_{f}\left(x_{0}\right)^{\top}\left(x-x_{0}\right) \\
& \nabla^{\top} x+{ }^{\square}\left(x_{0}\right)-\nabla^{\top} x_{0}
\end{aligned}
$$

Vector-valued multivariate functions
$\mathbb{R} \rightarrow \mathbb{R} \rightarrow$
$\mathbb{R} \rightarrow \mathbb{R}^{n} \quad \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$
vector valued, matrix valued
$\mathbb{R}^{n} \rightarrow \mathbb{R}$
$\mathbb{R}^{n \times m} \rightarrow \mathbb{R}$
of one variable
$f: \mathbb{R}^{h} \rightarrow \mathbb{R}^{m} \quad$ vector valued, multi variate

Vector-valued multivariate functions: linearization
$f: \mathbb{R}^{h} \rightarrow \mathbb{R}^{m} \quad$ vector valued, multi variate

$$
f(x)=\underbrace{f\left(x_{0}\right)}_{\mathbb{R}^{m}}+\underbrace{M}_{m \times n} \underbrace{M}_{\mathbb{R}^{n}}\left(x-x_{0}\right) \quad m=1 \Rightarrow M=\underbrace{\overbrace{}^{\top}}_{\substack{\nabla^{\top} \\ \text { transposed } \\ \text { gradient }}}
$$

The Jacobian matrix
$f: \mathbb{R}^{h} \rightarrow \mathbb{R}^{m} \quad$ vector valued, multi variate

$$
\begin{aligned}
& f(x)=\underbrace{f\left(x_{0}\right)}_{\mathbb{R}^{m}}+\underbrace{M}_{m \times n} \underbrace{M}_{\mathbb{R}^{n}}\left(x-x_{0}\right) \quad m=1 \Rightarrow M=\nabla^{\top} \\
& M=J \text { B Jacob Jacobian } \\
& \begin{array}{ll}
f(x)=\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right] & y=f(x)=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{m}
\end{array}\right]=\left[\begin{array}{l}
f_{i}(x) \\
f_{2}(x) \\
f_{m}(x)
\end{array}\right] \\
\end{array} \\
& \text { Jacobian } f=J_{f}=\left[\begin{array}{c}
\nabla f_{1}^{\top} \\
\nabla f_{2}^{\top} \\
\nabla f_{m}^{\top}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & -\frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{2}} \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
\end{aligned}
$$

The Jacobian matrix: Example

$$
\begin{aligned}
& f(x)=A x \quad A \in \mathbb{R}^{m \times n} \\
& \left(J_{f_{i j}}=\frac{\partial f_{i}}{x_{j}}=a_{i j}: a_{i}^{\top}: x=\sum_{k=1}^{n} a_{i j-j} x_{k}=A\right.
\end{aligned}
$$

Calculating the Jacobian: method 1

Calculate Jacobian: Method 1

$$
\left(J_{f}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}} \longrightarrow \underset{\text { matrix \& simplify }}{\text { arrange in a }}
$$

Calculating the Jacobian: method 2
Method 2: directional derivative

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& D[u] f(x)=\left.\frac{d}{d \alpha} f(x+\alpha u)\right|_{\alpha=0} \in \mathbb{R}^{m} \\
& b \text { linear whir. tu } \\
& D[u] f(x)=\frac{d}{d a} f(x+\alpha u)=J u
\end{aligned}
$$

Calculating the Jacobian: method 2 - Example

$$
\begin{aligned}
& f(x)=A x \\
& D[u] f=\left.\frac{d}{d \alpha} f(x+\alpha u)\right|_{\alpha=0}=\left.\frac{d}{d \alpha} A(x+\alpha u)\right|_{\alpha=0} \\
& \\
& =A u
\end{aligned}
$$

