Mathematics for AI

Lecture 2
Vectors, Vector Space, Span, Basis, Coordinates

Machine Learning

Learning from data

4	－		－	F	－	8			－
F－				二人日	気居	2		Pen	
	f	2	\cdots	6 F	4	考	3	2	4
			S3				\％	N	12
	Le	H		4	8	Ir	$\hat{6}$	\％	
7%			＊	0			X^{4}	0	
2	8								
－2	W2	$3{ }^{3}$	U2	（a）	（10，${ }^{2}$	5	－20	－84	
				만		\triangle	\cdots		14
			习	5	250	E	8	－ 5	Cute

Supervised Learning

K. N. Toosi

Supervised Learning

Training data:
$\mathrm{X}_{1}, \mathrm{y}_{1}$
$\mathrm{X}_{2}, \mathrm{y}_{2}$
$\mathrm{X}_{3}, \mathrm{y}_{3}$
$\mathrm{X}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}$

Supervised Learning

K. N. Toosi

Training data:

	Apple
2	Apple
2	Orange

Supervised Learning

K. N. Toosi

Training data:

Supervised Learning

Classification

Classification

Classification

Regression

input
features

Regression

input
features

Regression

Learnable Models

Learnable Models: Example

Learnable Models: Example

Learnable Models: Input-output map

$$
y=f(x)
$$

$f: R^{m} \rightarrow R^{n}$

Learnable Models: Input-output map

$$
\begin{array}{rl}
x \in R^{m} \rightarrow f & f \\
y=f(x, \theta) \\
f: R^{m} \rightarrow R^{n}
\end{array}
$$

Learnable Models: Input-output map

$$
\begin{gathered}
x \in R^{m} \rightarrow f y \in R^{n} \\
y=f(x, \theta) \quad \theta \in R^{k} \\
f: R^{m} \times R^{k} \rightarrow R^{n}
\end{gathered}
$$

Learnable Models: Example

$$
y=f(x, \theta)
$$

$f: R^{m} \times R^{k} \rightarrow R^{n}$

Features

Feature space

https://www.petersincak.com/news/why-i-do-not-believe-in-erro r-backpropagation/

Input Space

Feature Space

Unsupervised Learning

Neural Networks

Convolution Neural Network (CNN)

What is a Vector?

What is a Vector?

$\vec{B}=\left[\begin{array}{l}B_{x} \\ B_{y} \\ B_{z}\end{array}\right]$
https://mathinsight.org/vector introduction

Vector Scaling

https://semesters.in/unit-free-forced-fixed-vectorl

Vector Scaling

https://philschatz.com/precalculus-book/contents/m49412.html

Vector Addition

Vector Addition

https://mathinsight.org/vector introduction

Space

A set with a structure

Vector Spaces

Vector Space

- a set V
- scalars $\in R$ (C, or any field)
- Vector addition + ($u+v$ for $u, v \in V)$
- scalar multiplication ($a u$ for $a \in R, u \in V$)
- Commutativity: $u+v=v+u$
- Associativity: $u+(v+w)=(u+v)+w$
- Identity element: $\exists \mathrm{z} \in \mathrm{V}: \mathrm{v}+\mathrm{z}=\mathrm{z}+\mathrm{v}=\mathrm{v}$
- Inverse: for each $v \in V$ there is $v^{\prime} \quad: \quad v+v^{\prime}=z \quad$ (z defined above)
- (ab) $v=a(b v)$
- $1 \mathrm{v}=\mathrm{v}$
- $a(u+v)=a u+a v$
- $(a+b) v=a v+b v$

Why bother?

Why bother? adding apples and pears?

Why bother? Shape+Appearance Averaging

Jerk

Cyborg

Why bother? Shape+Appearance Averaging

Why bother? Define vector addition and scaling

Why bother? Average Faces by country

Why bother? functions as vectors

https://en.wikipedia.org/wiki/Vector space

Why bother? functions as vectors

Linear combination

Let $a, b \in R$. The vector $a x+b y$ is a linear combination of the vectors x and y.

Let $a_{i} \in R$. The vector $a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n}$ is a linear combination of the vectors $x_{1}, x_{2}, \ldots, x_{n}$.

Span

$\operatorname{span}(x, y)=\{a x+b y \mid a, b \in R\}$

The space of all linear combinations of x and y.

$$
\operatorname{span}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n} \mid a_{i} \in R\right\}
$$

Span

We say that $x_{1}, x_{2}, \ldots ., x_{n}$ span S if $S=\operatorname{span}\left(x_{1}, x_{2}, \ldots ., x_{n}\right)$.

Linear dependence

x, y, z are dependent if

- $x \in \operatorname{span}(y, z)$, OR
- $y \in \operatorname{span}(z, x), O R$
- $z \in \operatorname{span}(x, y)$
that is
- $x=a y+b z$, for some $a, b, O R$
- $y=a z+b x$, for some $a, b, O R$
- $z=a x+b y$, for some a, b.

Linear dependence

$x_{1}, x_{2}, \ldots, x_{n} \in V$ are linearly dependent if one of them can be written as a linear combination of the others (one of them is in the span of the others).

Linear dependence

$x_{1}, x_{2}, \ldots, x_{n} \in V$ are linearly dependent if one of them can be written as a linear combination of the others (one of them is in the span of the others).

Linear independence

x, y, z are independent if

- $x \notin \operatorname{span}(y, z)$, AND
- $y \notin \operatorname{span}(z, x)$, AND
- $z \notin \operatorname{span}(x, y)$

Linear independence

$x_{1}, x_{2}, \ldots, x_{n} \in V$ are linearly independent if none of them can be written as a linear combination of the others.

Linear independence

$x_{1}, x_{2}, \ldots, x_{n} \in V$ are linearly independent if none of them can be written as a linear combination of the others.

Equivalently:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n}=0 \Rightarrow a_{1}=a_{2}=\ldots .=a_{n}=0
$$

Basis

$\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$ such that

- $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent
- $v_{1}, v_{2}, \ldots, v_{n}$ span V

Basis

$\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$ such that

- $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent
- $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ span V
* n is the same for any choice of the basis vectors
* n is called the dimension of V
* There are also infinite dimensional vector spaces

* Basis (general definition)

$\left\{\mathrm{v}_{\mathrm{i}}\right\}_{\mathrm{i} \in \mathrm{I}} \subseteq \mathrm{V}$ such that

- v_{i} 's are linearly independent
- for any $v \in V$ there is a finite set of vectors $v_{1}, v_{2}, \ldots, v_{d} \in\left\{v_{i}\right\}_{i \in \mathrm{I}}$ such that $\mathbf{v} \in \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, v_{d}\right)$
* Any vector space has a basis
* cardinality of $\left\{v_{i}\right\}_{i \in I}$ is the same for any choice of the basis vectors
* cardinality of $\left\{v_{i}\right\}_{i \in I}$ is called the dimension of V

Bases and Coordinate Representation

Why is independence needed? => uniqueness
every $x \in \mathrm{~V}$ can be written uniquely as a linear combination of the basis vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$.

Bases and Coordinate Representation
\Rightarrow Every $n \in V$ can be written as a unique linear. combination of u_{1}, \ldots, u_{n}.

$$
x=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{k} u_{n}
$$

$\Rightarrow x$ can be represented as

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\\
a_{n}
\end{array}\right]
$$

as an array of read numbers.

$$
x=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n}
\end{array}\right]
$$

$a_{i}-5$ are called coordinates of n
-heirs.

$$
-1 \approx=1,(010,1)<=\text { Leis }
$$

Example: The Euclidean space

