Mathematics for AI

Lecture 2

Vectors, Vector Space, Span, Basis
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Learning from data
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https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/

Supervised Learning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Lear'ning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Learning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Learning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Learning
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Classification

y € {Class,, Class,, ..., Class }
input features Classifier




Classification
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Regression

input iRegressor}» y € R
features




Regression
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Learnable Models
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Learnable Models: Example

iCIassifier}—» 0




Learnable Models: Example
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Learnable Models: Input-output map

o= f beyen

y = £(x)
f: RM _, RN




Learnable Models: Input-output map

o= f beyen

y = f(x,0)

f! R™ - RN




Learnable Models: Input-output map

o= f beyen

y=f(x) O=K

f: RMx Rk — R"




Learnable Models: Example
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Feature space
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https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f
https://www.petersincak.com/news/why-i-do-not-believe-in-error-backpropagation/
https://www.petersincak.com/news/why-i-do-not-believe-in-error-backpropagation/

Unsupervised Learning



https://towardsdatascience.com/machine-learning-types-and-algorithms-d8b79545a6ec

Neural Networks
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What is a Vector?

/'



What is a Vector?



https://mathinsight.org/vector_introduction

Vector Scaling



https://semesters.in/unit-free-forced-fixed-vector/

Vector Scaling



https://philschatz.com/precalculus-book/contents/m49412.html

Vector Addition



https://mathinsight.org/vector_introduction

Vector Addition



https://mathinsight.org/vector_introduction

Space

A set with a structure



Vector Spaces



Vector Space

a set V
scalars € R (C, or any field)
Vector addition+ (u+v foruyv € V)

scalar multiplication (au fora € R,u € V)
o Commutativity:u+v=v+u
o Associatfivity: u+ (v+w) = (u+v)+w
o Identityelement: 3 z€V: v+z=z+v=v

o Inverse: foreachv € Vthereis v' : v+v' =z (zdefined above)
(ab)v=a(bv)
lv=v

a(u+v)=au+av
(atb)v=av+byv

o O O O



Why bother?



Why bother? adding apples and pears?










Why bother? Define vector addition and
scaling




Why bother? Average Faces by country
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Why bother? functions as vectors

(sin + exp)(0.5)

sin(0.5)

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00



https://en.wikipedia.org/wiki/Vector_space




Linear combination

Let a,b € R. The vector a x + by is a linear combination of
the vectors x and y.

Let a. € R. The vector a, X, +a, X, + ..+ a, Xn is a linear

combination of the vectors Xp Xy ey X



Span

span(x,y)={ax+by|ab € R}

The space of all linear combinations of x andy.

span(x,, X,, ... X )={a; x;+a, x,+...+a x |a € R}



Span

We say that x,, X,

, .. X span S if S = span(x,, X,

LX)



Linear dependence

X,y,Z are dependent if

e X € span(y,z), OR
® y € span(z,x), OR
e z € span(x.y)

that is

e x=ay+bz forsomea,b, OR
e y-az+bx, forsomeab, OR
e z-ax+by,forsomea,b.



Linear dependence

X, X,, ... X € V are linearly dependent if one of them
can be written as a linear combination of the others (one
of them is in the span of the others).



Linear dependence

X, X,, ... X € V are linearly dependent if one of them
can be written as a linear combination of the others (one
of them is in the span of the others).



Linear independence

X,y,Z are independent if

e x ¢ span(y,z), AND
e y < span(z,x), AND
e z 4 span(x,y)



Linear independence

X{, X5, ... X € V are linearly independent if none of them
can be written as a linear combination of the others.



Linear independence

X{, X5, ... X € V are linearly independent if none of them
can be written as a linear combination of the others.

Equivalently:

alx1+azx2+....+anxn=0 — alzazz....=an:0



Basis

Vi, V,, .., ¥V, € Vsuch that
® V,V,, ..V are linearly independent
® V,V,, ..V span V



Basis

Vi, ¥y, ... V. € V such that
® V,V,, ..V are linearly independent
® Vv,V,, ..,V span V

* n is the same for any choice of the basis vectors
* nis called the dimension of V

* There are also infinite dimensional vector spaces



* Basis (general definition)

{v} < € Vsuch that
e v.'sare linearly independent

e foranyv € V there is a finite set of vectorsv,,v,, .., v, € {v}._;such
that v € span(v,, v,, .., v,)

* Any vector space has a basis
* cardinality of {v}._; is the same for any choice of the basis vectors

* cardinality of {v.}._; is called the dimension of V



Bases and Coordinate Representation

Why is independence needed? => uniqueness

every X € V can be written uniquely as a linear combination of the basis

vectors Vii Vo, s V.



Bases and Coordinate Representation
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Example: The Euclidean space



