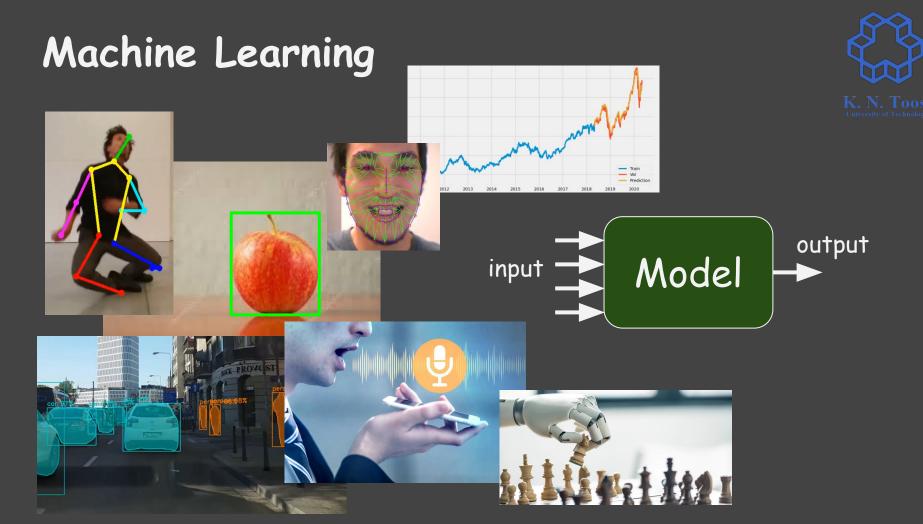
Mathematics for AI

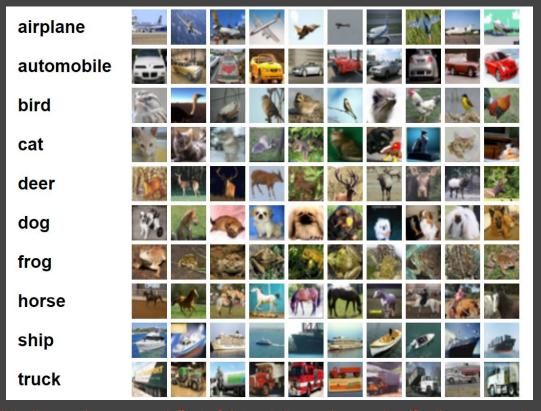
Lecture 2

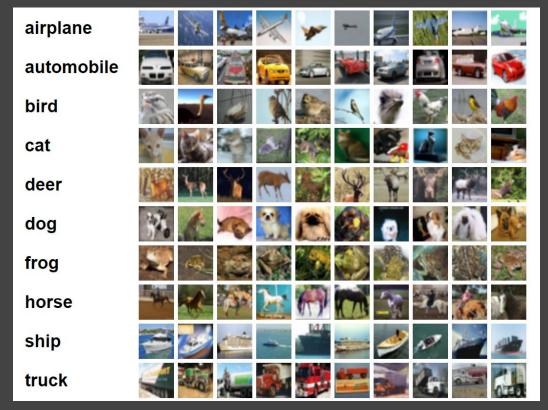
Vectors, Vector Space, Span, Basis,

Coordinates



Learning from data





Training data:

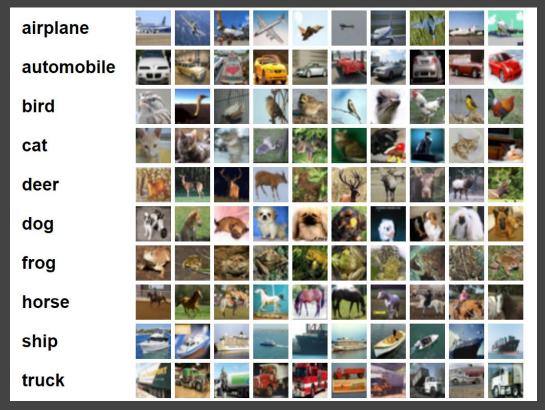
$$X_n, y_n$$

airplane	
automobile	
bird	
cat	
deer	
dog	
frog	
horse	
ship	
truck	

Training data:

	Apple
	Apple
	Orange
:	
	Orange

http://seansolevman.com/effect-of-dataset-size-on-image-classification-accuracy.

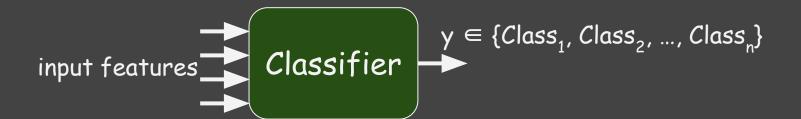


Training data:

	0
	0
	1
:	
	1

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Classification

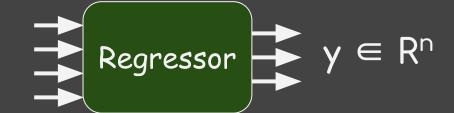


Classification

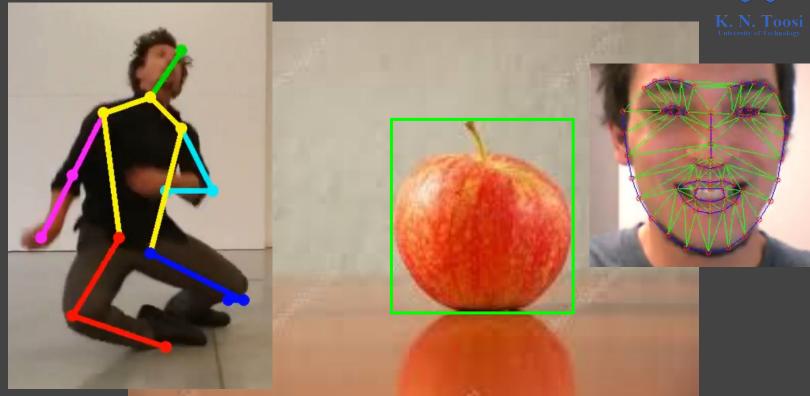
Classification

Regression

Regression



Regression



Learnable Models

Learnable Models: Example

Learnable Models: Example

Learnable Models: Input-output map

$$x \in \mathbb{R}^m \longrightarrow y \in \mathbb{R}^n$$

$$y = f(x)$$

$$f: \mathbb{R}^m \to \mathbb{R}^n$$

Learnable Models: Input-output map

$$x \in \mathbb{R}^m \longrightarrow \emptyset \in \mathbb{R}^n$$

$$y = f(x,\theta)$$

$$f: R^m \to R^n$$

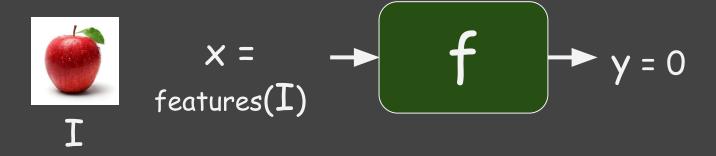
Learnable Models: Input-output map

$$x \in \mathbb{R}^m \longrightarrow \mathbf{f}$$
 \mathbf{f}

$$y = f(x, \theta)$$
 $\theta \in \mathbb{R}^k$

$$f: R^m \times R^k \rightarrow R^n$$

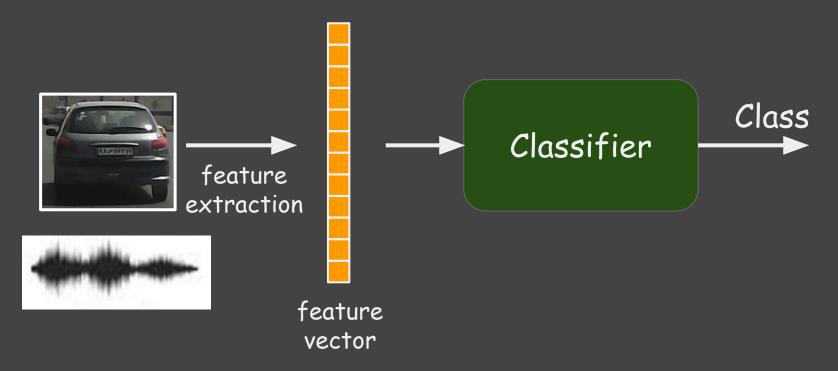
Learnable Models: Example



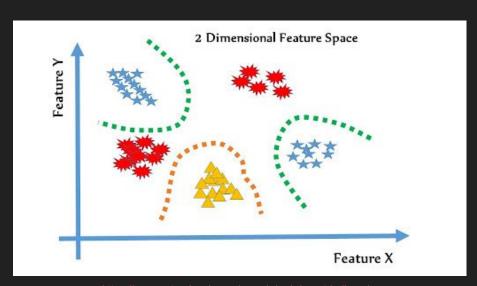
$$y = f(x,\theta)$$

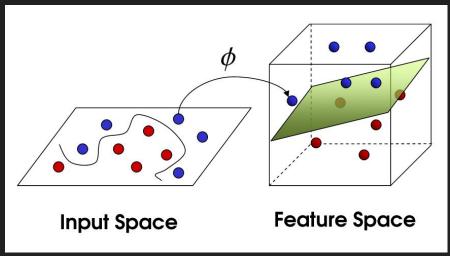
$$f: R^m \times R^k \to R^n$$

Features



Feature space

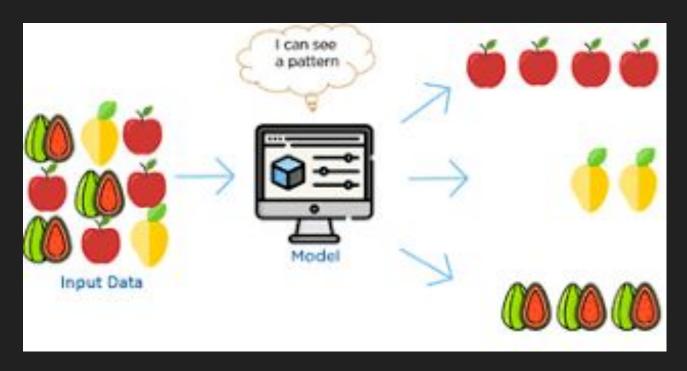




https://www.petersincak.com/news/why-i-do-not-believe-in-error-backpropagation/

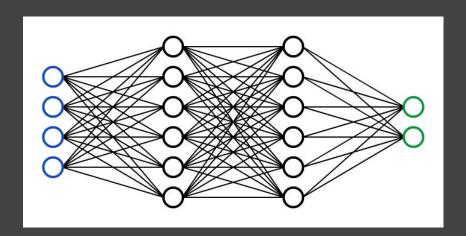
https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f

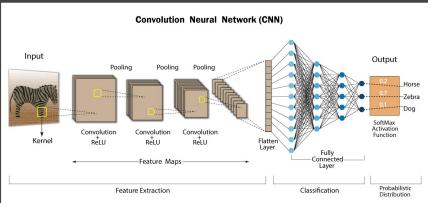
Unsupervised Learning

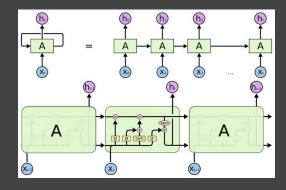


https://towardsdatascience.com/machine-learning-types-and-algorithms-d8b79545a6ec

Neural Networks

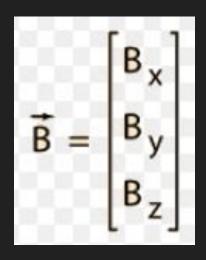


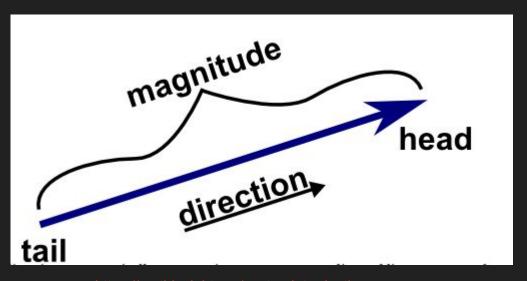




What is a Vector?

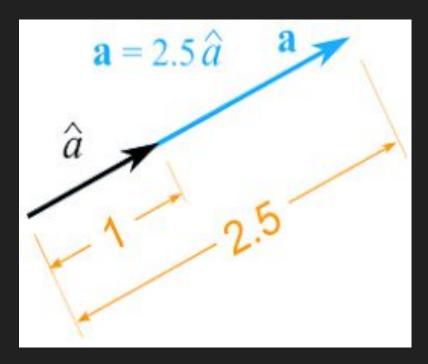
What is a Vector?





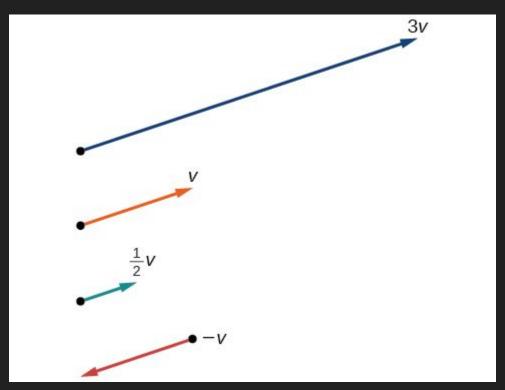
https://mathinsight.org/vector_introduction

Vector Scaling



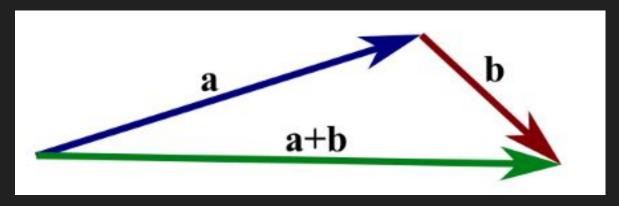
https://semesters.in/unit-free-forced-fixed-vector/

Vector Scaling



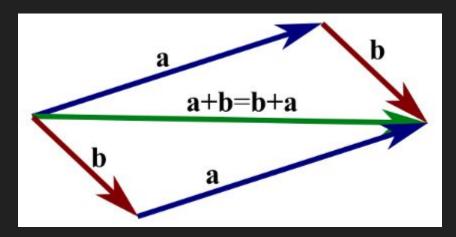
https://philschatz.com/precalculus-book/contents/m49412.htm

Vector Addition



https://mathinsight.org/vector_introduction

Vector Addition



https://mathinsight.org/vector_introduction

Space

K. N. Toosi
University of Technology

A set with a structure

Vector Spaces

Vector Space

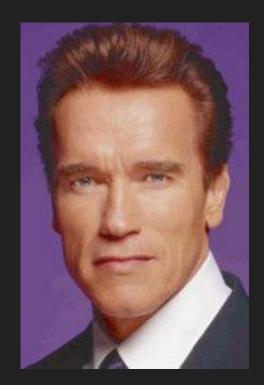
- a set V
- scalars $\in R$ (C, or any field)
- Vector addition + $(u + v \text{ for } u, v \in V)$
- scalar multiplication (a u for $a \in R$, $u \in V$)
 - Commutativity: u + v = v + u
 - Associativity: u + (v + w) = (u + v) + w
 - Identity element: $\exists z \in V: v + z = z + v = v$
 - Inverse: for each $v \in V$ there is v' : v + v' = z (z defined above)
 - \circ (ab) v = a (b v)
 - \circ 1 v = v
 - a(u+v) = a u + a v
 - $\circ \quad (a+b) v = a v + b v$

Why bother?

Why bother? adding apples and pears?

Why bother? Shape+Appearance Averaging

Jerk



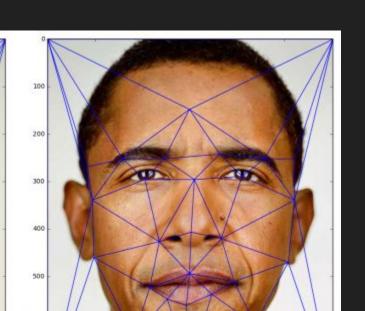
Cyborg

Why bother? Shape+Appearance Averaging

Jerk Cyjerk Cyborg

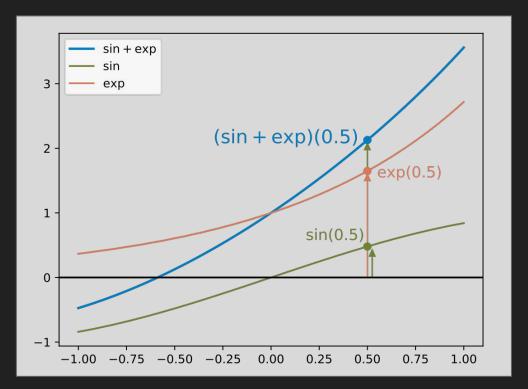
Why bother? Define vector addition and

scalina



Why bother? Average Faces by country

Why bother? functions as vectors



Why bother? functions as vectors

Linear combination

Let a,b \in R. The vector a x + b y is a linear combination of the vectors x and y.

Let $a_i \in R$. The vector $a_1 \times_1 + a_2 \times_2 + \dots + a_n \times_n$ is a linear combination of the vectors x_1, x_2, \dots, x_n .

Span

$$span(x,y) = \{ a x + b y \mid a,b \in R \}$$

The space of all linear combinations of x and y.

$$span(x_1, x_2, ..., x_n) = \{a_1 x_1 + a_2 x_2 + + a_n x_n \mid a_i \in R \}$$

Span

We say that $x_1, x_2, ..., x_n$ span S if S = span $(x_1, x_2, ..., x_n)$.

Linear dependence

x,y,z are dependent if

- $x \in span(y,z)$, OR
- $y \in span(z,x)$, OR
- $z \in span(x,y)$

that is

- x = a y + b z, for some <u>a, b, OR</u>
- y = az + bx, for some a,b, OR
- z = a x + b y, for some a,b.

Linear dependence

 $x_1, x_2,, x_n \in V$ are **linearly dependent** if one of them can be written as a linear combination of the others (one of them is in the span of the others).

Linear dependence

 $x_1, x_2,, x_n \in V$ are **linearly dependent** if one of them can be written as a linear combination of the others (one of them is in the span of the others).

Linear independence

x,y,z are independent if

- x ∉ span(y,z), AND
- y ∉ span(z,x), AND
- $z \notin span(x,y)$

Linear independence

 $x_1, x_2,, x_n \in V$ are **linearly independent** if none of them can be written as a linear combination of the others.

Linear independence

 $x_1, x_2, ..., x_n \in V$ are **linearly independent** if none of them can be written as a linear combination of the others.

Equivalently:

$$a_1 x_1 + a_2 x_2 + + a_n x_n = 0 \implies a_1 = a_2 = = a_n = 0$$

Basis

$$v_1, v_2, ..., v_n \in V$$
 such that

- v₁, v₂, ..., v_n are linearly independent
- v₁, v₂, ..., v_n span V

Basis

$$v_1, v_2, ..., v_n \in V$$
 such that

- v₁, v₂, ..., v_n are linearly independent
- v₁, v₂, ..., v_n span V

- * n is the same for any choice of the basis vectors
- * n is called the dimension of V
- * There are also infinite dimensional vector spaces

* Basis (general definition)

$$\{v_i\}_{i\in I}\subseteq V$$
 such that

- v_i's are linearly independent
- for any $v \in V$ there is a **finite** set of vectors $v_1, v_2, ..., v_d \in \{v_i\}_{i \in I}$ such that $v \in \text{span}(v_1, v_2, ..., v_d)$
- * Any vector space has a basis
- * cardinality of $\{v_i\}_{i\in T}$ is the same for any choice of the basis vectors
- * cardinality of $\{v_i\}_{i\in I}$ is called the dimension of V

Bases and Coordinate Representation

Why is independence needed? => uniqueness

every $x \in V$ can be written **uniquely** as a linear combination of the basis vectors $v_1, v_2, ..., v_n$.

Bases and Coordinate Representation

⇒ Every ne	-			_	rique
linear combination of u,, -, un.					
2 = a, U, + a2 U2 + + an Un ,					
				rail	
=> n can be represented as				az	
				a ₃	
	aı,	1 -1 -14	1000	12.1	
n =	a ₂	as an	array of	, Land.	numbers.
Inales	0)	durant			
$\lfloor a_n \rfloor$					
ai-s are colled coordinates of n					
- latia					
منقات بردارمای رای واسترات					
	-		76.5		Application .

Example: The Euclidean space

