Mathematics for AI

Lecture 20

Modeling Uncertainty, Random Variables, Probability mass and density functions,

Mathematical Tools for modeling

- Variables
- Functions, Time series, Signals \& Systems
- (ordinary, differential, integral) equations

Example:

How to model uncertainty

$\stackrel{x}{x} \rightrightarrows \quad \theta \stackrel{y}{\rightrightarrows}$
$\left.\begin{array}{c}\text { CPSS } \\ \text { Cell } \\ \rightarrow \\ \rightarrow\end{array}\right) \rightarrow 0$

$$
y=f_{\theta}(8)
$$

How to model uncertainty

https://www.semanticscholar.org/paper/Multi-Modal-Trajectory-Prediction-of-Surrounding-Deo-Trivedi /305c4d91b0f70853a1cb0ed2a60a466b84e5c13d

Uncertainty

- Problems including uncertainty, hidden variables,
- Unknown factors,
- All factors cannot be exactly measured,
- Complex factors or relations that are too hard to model

Example:

$$
\mathbf{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0}
$$

where

$$
\mathbf{f}=\mathbf{f}_{\mathrm{known}}+\mathbf{f}_{\text {wind }}
$$

Uncertainty

K. N. Toosi

- Problems including uncertainty, hidden variables,
- Unknown factors,
- All factors cannot be exactly measured,
- Complex factors or relations that are too hard to model

Example: GPS

Uncertainty

- Problems including uncertainty, hidden variables,
- Unknown factors,
- All factors cannot be exactly measured,
- Complex factors or relations that are too hard to model

Example:

$$
f(x)=A x+\underset{\downarrow}{ } b x^{\top} A \sin (x) \infty \frac{1}{\left.\log \mid x^{\top} x\right)}
$$

Probabilistic Models

- Model probabilistic uncertainty/randomness
- Random Variables
- Distributions

Random Variables

$$
\begin{aligned}
& X: \Omega \rightarrow \mathbb{R} \\
& X=1 \\
& X=\left\{\begin{array}{rrr}
0 & \text { with probability (0.3 } \\
1 & " & 0.5 \\
2 & 0.3 & 0.5 \\
2 & 0.2 & 0 \\
0 & 0.2 \\
\hline
\end{array}\right.
\end{aligned}
$$

Random Variables

- Profit = Revenue - Cost
- Revenue $=f(n)$
- Cost = $g(n)$
- n : number of packages produced per day
- Ordinary (deterministic) Variables:
- $n=244$
- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$

Random Variables

- Ordinary (deterministic) Variables:
- $n=244$
- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Mathematical Operations
- addition, subtraction, multiplication, etc.
- functions
- reasoning

Representing Random Variables

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Probability Distribution
- Probability Mass Function
- $\mathrm{p}=\{(243,1 / 6),(244,3 / 6),(245,2 / 6)\}$
- $p(243)=1 / 6$

Representing Random Variables

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Probability Distribution
- Probability Mass Function
- $p=\{(243,1 / 6),(244,3 / 6),(245,2 / 6)\}$
- $p(243)=\operatorname{Pr}(\mathrm{N}=243)=1 / 6$

Representing Random Variables

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Ordinary variables as special case of random variables:

Representing Random Variables

Toosi

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Ordinary variables as special case of random variables:
- $n=243$ with a probability of 0
- $n=244$ with a probability of 1
- $n=245$ with a probability of 0

Operations on random variables

$$
\begin{aligned}
& X=\left\{\begin{array}{ll}
0 & p=0.3 \\
1 & p=0.5 \\
2 & p=0.2
\end{array} \quad 2 X=? .\right. \\
& Y=2 X
\end{aligned} \quad Y=\left\{\left.\begin{array}{ll}
0 & p=0.3 \\
2 & p=0.5 \\
4 & p=0.2
\end{array} \right\rvert\, \quad Y=f(X)\right.
$$

Adding two independent random variables
X : How many products Mehran will sell today.
Y: " " " Milad

$$
X=\left\{\begin{array}{ll}
0 & p=0.5 \\
1 & p=0.3 \\
2 & p=0.2
\end{array} \quad Y= \begin{cases}0 & p=0.1 \\
1 & p=0.8 \\
2 & p=0.1\end{cases}\right.
$$

Z : How many products Milad ${ }^{\circ} \&^{2}$ Mehran will sell today. $Z=X+Y \quad$ (Assuming X and Y are independent).

$$
Z= \begin{cases}0 & p=0.5 \times 0.1=0.05 \\ 1 & p=0.5 \times 0.8+0.3 \times 0.1=0.43 \\ 2 & p=0.2 \times 0.1+0.3 \times 0.8+0.5 \times 0.1=0.31 \\ 3 & p=0.2 \times 0.8+0.1 \times 0.3=0.19 \\ 4 & p=0.2 \times 0.1=0.02\end{cases}
$$

Continuous Random Variables

$$
\begin{aligned}
& \text { - } \mathrm{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0} \\
& \text { - } \mathrm{f}=\mathrm{f}_{\mathrm{known}}+\mathrm{f}_{\mathrm{wind}} \\
& \text { - } \mathrm{f}_{\mathrm{wind}}=\text { ? }
\end{aligned}
$$

Continuous Random Variables

$$
\begin{aligned}
& \text { - } \mathbf{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0} \\
& \text { - } \mathbf{f}=\mathbf{f}_{\text {known }}+\mathbf{f}_{\text {wind }} \\
& \text { - } \mathrm{f}_{\text {wind }}=\text { ? }
\end{aligned}
$$

Continuous Random Variables

$$
\begin{aligned}
& \text { - } \mathrm{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0} \\
& \text { - } \mathrm{f}=\mathrm{f}_{\mathrm{known}}+\mathrm{f}_{\text {wind }} \\
& \text { - } \mathrm{f}_{\text {wind }}=\text { ? }
\end{aligned}
$$

Continuous Random Variables

- the probability of a variable being in a certain interval is of interest,
- Probability Density Function (PDF)
$\operatorname{Pr}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b})=\int_{x \in(a, b)} p(x) d x$

Continuous Random Variables

- In continuous case, mostly the probability of a variable being in a certain interval is of interest,
- Probability Density Function (PDF)

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}) & =\int_{x \in(a, b)} p(x) d x \\
\operatorname{Pr}(x \in S) & =\int_{S} p(x) d x
\end{aligned}
$$

Probability Mass Function vs Probability Density Function

$$
\begin{aligned}
& \operatorname{PMF} \quad p(n)=\operatorname{Pr}(N=n) \quad n \in \mathbb{Z} \\
& P D F \quad P(x) \quad \int_{a}^{b} p(x) d x=\operatorname{Pr}(a \leqslant X \leqslant b) \quad x \in \mathbb{R}
\end{aligned}
$$

Cumulative Distribution

$$
\begin{aligned}
& P\left(n_{0}\right)=\operatorname{Pr}\left(N \leqslant n_{0}\right)=\sum_{n=-\infty}^{n_{0}} p(n) \\
& P\left(x_{0}\right)=\operatorname{Pr}\left(X \leqslant x_{0}\right)=\int_{-\infty}^{x_{0}} p(n) d x
\end{aligned}
$$

Adding two random variables (general case)
X: How many Mehran sells
Y: How "Mild sells
Z. How many both sell
$Z=X+Y=$? (what if they are not independent?
$Z=f(X, Y)=$? $\quad p(X) \& p(Y)$ won't help!

