Mathematics for AI

Lecture 21

Joint distribution, Marginal Distribution, Conditional Distribution, Probabilistic Modeling, Generative vs Discriminative Models

Adding two random variables (general case)
X: How many Mehran sells
Y: How "Mild sells
Z. How many both sell
$Z=X+Y=$? (what if they are not independent?
$Z=f(X, Y)=$? $\quad p(X) \& p(Y)$ won't help!

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$ $\operatorname{Pr}(Y=b)=1 / 4$
- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

The joint probability distribution

K. N. Toosi

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

First Scenario: Roll a (fair) dice twice

- X : first number, Y : second number
- $\operatorname{Pr}(X=6$ AND $Y=1)=$?

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

First Scenario: Roll a (fair) dice twice

- X : first number, Y : second number
- $\operatorname{Pr}(X=6$ AND $Y=1)=\operatorname{Pr}(X=6) P(Y=1)=1 / 6 * / 6=1 / 36$

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

Second Scenario (missing exam => failing course)

- $\operatorname{Pr}($ miss exam session $)=0.01$

$$
\operatorname{Pr}(\text { fail course })=0.08
$$

- Pr (miss exam session AND fail course) $=$?

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

Second Scenario (missing exam => failing course)

- $\operatorname{Pr}($ miss exam session $)=0.01$

$$
\operatorname{Pr}(\text { fail course })=0.08
$$

- $\operatorname{Pr}($ miss exam session AND fail course $)=0.01$

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

Second Scenario (missing exam => failing course)

- $\operatorname{Pr}($ miss exam session $)=0.01$

$$
\operatorname{Pr}(\text { fail course })=0.08
$$

How the first and second scenarios differ?

- $\operatorname{Pr}($ miss exam session AND fail course $)=0.01$

The joint probability distribution

- The probability of co-occurrence.
- If we have two random variables X, Y we cannot model the system using $\operatorname{Pr}(X=x)$ and $\operatorname{Pr}(Y=y)$.
- Probability mass function (Discrete Variables)
- $p(x, y)=\operatorname{Pr}(X=x$ AND $Y=y)=\operatorname{Pr}(X=x, Y=y)$

The joint probability distribution

- The probability of co-occurrence.
- If we have two random variables X, Y we cannot model the system using $\operatorname{Pr}(X=x)$ and $\operatorname{Pr}(Y=y)$.
- Probability mass function (Discrete Variables)
- $p(x, y)=\operatorname{Pr}(X=x$ AND $Y=y)=\operatorname{Pr}(X=x, Y=y)$
- Probability Density function (Continuous Variables)
- $p(x, y)$

The joint probability distribution

- Probability Density function (Continuous Variables)

$$
\operatorname{Pr}((x, y) \in S)=\int_{S} p(x, y) d x d y
$$

Generalize Relations

Probabilistic Modelling

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$, predict x, y, z

Remember: The joint probability distribution

- The probability of co-occurrence.
- Probability mass function (Discrete Variables)
- $p(x, y)=\operatorname{Pr}(X=x$ AND $Y=y)=\operatorname{Pr}(X=x, Y=y)$
- Probability Density function (Continuous Variables) - $p(x, y)$

Remember: Probabilistic Modelling

K. N. Toosi

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$, predict x, y, z
- Find the most likely configuration of system variables

$$
x^{*}, y^{*}, z^{*}=\arg \max _{x, y, z} p(x, y, z)
$$

Remember: Probabilistic Modelling

K. N. Toosi

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$
- If we know $Z=Z_{0}$, predict x, y

$$
x, y=\arg \max _{x, y} p\left(x, y, z_{0}\right)
$$

Generative Model

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

2. prediction/testing
$y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*}=\arg \max _{y_{1}, \ldots, y_{n}} p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$

Example:

The joint probability of

- having a rainfall in an hour, and
- the sky being cloudy at the moment
- $p(r, c)=\operatorname{Pr}(R=r, C=c)$

r (rain)	c (cloudy)	$\operatorname{Pr}(R=r, C=c)$
0	0	0.75
0	1	0.10
1	0	0.05
1	1	0.10

Example:

The joint probability of

- having a rainfall in an hour and
- the sky being cloudy at the moment
- $p(r, c)=\operatorname{Pr}(R=r, C=c)$

r (rain)	c (cloudy)	$\operatorname{Pr}(R=r, C=c)$
0	0	0.75
0	1	0.10
1	0	0.05
1	1	0.10

\[

\]

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\operatorname{Pr}(R=r)=?
$$

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\operatorname{Pr}(R=r)=\operatorname{Pr}((R=r \text { AND } C=0) O R(R=r \text { AND } C=1))
$$

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\begin{aligned}
\operatorname{Pr}(R=r) & =\operatorname{Pr}((R=r \text { AND } C=0) O R(R=r \text { AND } C=1)) \\
& =\operatorname{Pr}(R=r \text { AND } C=0)+\operatorname{Pr}(R=r \text { AND } C=1) \quad(w h y ?)
\end{aligned}
$$

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\begin{align*}
\operatorname{Pr}(R=r) & =\operatorname{Pr}((R=r \text { AND } C=0) O R(R=r \text { AND } C=1)) \\
& =\operatorname{Pr}(R=r \text { AND } C=0)+\operatorname{Pr}(R=r \text { AND } C=1) \tag{why?}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Pr}(R=r, C=c) \\
& \begin{array}{l|l|l}
& \mathrm{R}=0 & \mathrm{R}=1 \\
\hline \mathrm{C}=0 & 0.75 & 0.05 \\
\mathrm{C}=1 & 0.10 & 0.10
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Pr}(R=r) \\
\begin{array}{c|c|c}
\\
\mathrm{R}=0 & \mathrm{R}=1 \\
\hline 0.85 & 0.15
\end{array}
\end{gathered}
$$

Marginal Distribution

- Discrete: probability mass function $p(m, n)=\operatorname{Pr}(M=m, N=n)$

$$
p(m)=\operatorname{Pr}(M=m)=\sum_{n} p(m, n)
$$

- Continuous: probability density function $p(x, y)$

$$
p(x)=\int p(x, y) d y
$$

Marginal Probability

$P(x, y)$	$x=0$	$x=1$	$x=2$	row sum
$y=0$	0.32	0.03	0.01	0.36
$y=1$	0.06	0.24	0.02	$\mathbf{0 . 3 2}$
$y=2$	0.02	0.03	0.27	$\mathbf{0 . 3 2}$
col sum	$\mathbf{0 . 4 0}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 3 0}$	checksum $=1.0$

Marginal Probability

image from www.wolfram.com

Question

- What is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)
$$

$\operatorname{Pr}(R=r, C=c)$

	$\mathrm{R}=0$	$\mathrm{R}=1$
$\mathrm{C}=0$	0.75	0.05
$\mathrm{C}=1$	0.10	0.10

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

$$
\begin{aligned}
& \operatorname{Pr}(R=r, C=c) \\
& \begin{array}{l|l||l|}
& \mathrm{R}=0 & \mathrm{R}=1 \\
\hline \mathrm{C}=0 & 0.75 & 0.05 \\
\mathrm{C}=1 & 0.10 & 0.10 \\
&
\end{array}
\end{aligned}
$$

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

$$
\operatorname{Pr}(R=1 \mid C=1)=0.10 /(0.10+0.10)=0.5
$$

$$
=\frac{\operatorname{Pr}(R=1, C=1)}{\operatorname{Pr}(R=1, C=1)+\operatorname{Pr}(R=0, C=1)}
$$

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Conditional Distribution

- Discrete: joint PMF $\quad p(m, n)=\operatorname{Pr}(M=m, N=n)$

$$
\begin{aligned}
\operatorname{Pr}\left(N=n_{0} \mid M=m\right) & =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\sum_{n} \operatorname{Pr}(N=n, M=m)} \\
& =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\operatorname{Pr}(M=m)}
\end{aligned}
$$

- Continuous: joint PDF $p(x, y)$

Conditional Distribution

- Discrete: joint PMF $\quad p(m, n)=\operatorname{Pr}(M=m, N=n)$

$$
\begin{aligned}
\operatorname{Pr}\left(N=n_{0} \mid M=m\right) & =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\sum_{n} \operatorname{Pr}(N=n, M=m)} \\
& =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\operatorname{Pr}(M=m)}
\end{aligned}
$$

- Continuous: joint PDF $p(x, y)$

$$
p(y \mid x)=\frac{p(x, y)}{\int p(x, y) d y}=\frac{p(x, y)}{p(x)}
$$

Generalize Functions

Generalize Functions

 continuous

Discriminative Model

Generative: $\quad p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$
Discreminative: $p\left(y_{1}, y_{2}, \ldots, y_{n} \mid x_{1}, x_{2}, \ldots, x_{m}\right)$

Discriminative Model

Generative: $\quad p(X, Y)$ Discreminative: $p(Y \mid X)$

$$
P(X, Y)=P(Y \mid X) P(X)
$$

$$
P(Y \mid X)=\frac{P(X, Y)}{P(X)}=\frac{P(X, Y)}{\sum_{Y^{\prime}} P\left(X, Y^{\prime}\right)}
$$

