Mathematics for AI

Lecture 22
Probabilistic Independence,

Question

- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in $1 \mathrm{hr} \mid$ cloudy now $)=.5$
- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in 1 hr | I failed the math exam) =?

Question

- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in $1 \mathrm{hr} \mid$ cloudy now $)=.5$
- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in $1 \mathrm{hr} \mid$ I failed the math exam $)=.15$

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

$$
P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m)
$$

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m)$ for all m, n

$$
\begin{aligned}
& P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m) \\
& \Rightarrow P(M=m, N=n)=\operatorname{Pr}(N=n) \operatorname{Pr}(M=m)
\end{aligned}
$$

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

$$
\begin{aligned}
& P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m) \\
& \Rightarrow P(M=m, N=n)=\operatorname{Pr}(N=n) \operatorname{Pr}(M=m)
\end{aligned}
$$

- What does independence mean?
- does "having a rainfall" depend on "people using umbrellas"?

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

$$
\begin{aligned}
& P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m) \\
& \Rightarrow P(M=m, N=n)=\operatorname{Pr}(N=n) \operatorname{Pr}(M=m)
\end{aligned}
$$

- Continuous case:

$$
p(y \mid x)=p(y) \quad \Rightarrow \quad p(x, y)=p(x) p(y)
$$

Independence and model complexity

$$
\begin{aligned}
m & =1 \ldots 100 \\
n & =1 \cdots 50
\end{aligned}
$$

More than two variables

- $p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right)$
- Pairwise independence
- Every pair of variables x_{i}, x_{j} are independent
- Mutual Independence
- $p\left(x_{i} \mid\right.$ any subset of other variables $)=p\left(x_{i}\right)$
- $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)$

More than two variables

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =p\left(x_{1} \mid x_{2}, x_{3}, \ldots x_{n}\right) p\left(x_{2}, x_{3}, \ldots, x_{n}\right) \\
y & =p\left(x_{1} \mid x_{2}, \ldots x_{n}\right) p\left(x_{2} \mid x_{3}-x_{n}\right) p\left(x_{3}-x_{n}\right) \\
& =p\left(x_{1} \mid x_{2}-x_{n}\right) p\left(x_{2} \mid x_{2}-x_{n}\right) p\left(x_{3} \mid x_{4}-x_{n}\right) \\
\text { chain Rule } & \ldots p\left(x_{n-1} \mid x_{n}\right) p\left(x_{n}\right)
\end{aligned}
$$

$x_{1}, x_{2}, \ldots x_{n}$ idependent.

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots n_{n} \text { idependent. } \\
& p\left(n_{1}, n_{2}, \ldots, n_{n}\right)=p\left(n_{1}\right) p\left(n_{2}\right) \ldots p\left(n_{n-1}\right) p\left(n_{n}\right)
\end{aligned}
$$

testing independence

$$
\begin{aligned}
& p(x, y, z) \longrightarrow p(x)=\sum_{y} \sum_{z} p(x, y, z) \\
& p(y)=\sum_{x} \sum_{z} p(x, y, z) \\
& p(z)=\sum_{x} \sum_{y} p(x, y, z) \\
& p(n, y, z) \stackrel{?}{=} p(x) p(y) p(z) \text { for all } x, y, z ?
\end{aligned}
$$

Sometimes dependence is desired

$$
P(Y \mid X)=P(Y)
$$

\rightarrow system is useless!

Example

- Are "Having a cloudy morning" and "getting wet" dependent?
- $P(W \mid C)=P(W)$?

Example

- Are "Having a cloudy morning" and "getting wet" dependent?
- $P(W \mid C) \neq P(W)$

Example

- Knowing that we had a rainfall
- Are "Having a cloudy morning" and "getting wet" dependent?

Conditional Independence

- Knowing that we had a rainfall
- Are "Having a cloudy morning" and "getting wet" dependent?
- $P(W \mid R, C)=P(W \mid R)$

Conditional Independence

- Knowing that we had a rainfall
- Are "Having a cloudy morning" and "getting wet" dependent?
- $P(W \mid R, C)=P(W \mid R)$
- $P(W, C \mid R)=P(W \mid R) P(C \mid R)$

Conditional Independence

K. N. Toosi

- Knowing that we had a rainfall
- Are "Having a cloudy morning" and "getting wet" dependent?
- $P(W \mid R, C)=P(W \mid R)$
- $P(W, C \mid R)=P(W \mid R) P(C \mid R)$
- W and C are conditionally independent

Conditional Independence

Conditional Independence

Conditioning can destroy independence

$$
P(X \mid Y)=P(X)
$$

Conditioning can destroy independence

Conditioning can destroy independence

Conditioning can destroy independence

Conditioning can destroy independence

Conditional independence reduce complexity?

- Tabular representation P(C,R,W)
- General case: how many independent parameters in general?

Conditional independence reduce complexity?

- Tabular representation P(C,R,W)
- General case: how many independent parameters in general? 7

Conditional independence reduce complexity?

- Tabular representation P(C,R,W)
- General case: how many independent parameters in general? 7
- Fully independent case: $P(C, R, W)=P(C) P(R) P(W)$
- How many parameters?

Conditional independence reduce complexity?

- Tabular representation P(C,R,W)
- General case: how many independent parameters in general? 7
- Fully independent case: $P(C, R, W)=P(C) P(R) P(W)$
- How many parameters? 3

Conditional independence reduce complexity?

- Tabular representation P(C,R,W)
- General case: how many independent parameters in general? 7
- Fully independent case: $P(C, R, W)=P(C) P(R) P(W)$
- How many parameters? 3
- Conditionally independent: $P(C, R, W): P(W \mid R, C)=P(W \mid R)$
- How many parameters?

Conditional independence reduce complexity?

- Conditionally independent: $P(C, R, W)=P(W \mid R, C)=P(W \mid R)$
- How many parameters?
- $P(C, R, W)=P(W \mid C, R) P(C, R)=P(W \mid R) P(C, R)$

Conditional independence reduce complexity?

- Conditionally independent: $P(C, R, W)=P(W \mid R, C)=P(W \mid R)$
- How many parameters?
- $P(C, R, W)=P(W \mid C, R) P(C, R)=P(W \mid R) P(C, R)$
- $P(W \mid R)$:
- $P(C, R)$:

Conditional independence reduce complexity?

- Conditionally independent: $P(C, R, W)=P(W \mid R, C)=P(W \mid R)$
- How many parameters?
- $P(C, R, W)=P(W \mid C, R) P(C, R)=P(W \mid R) P(C, R)$
- $P(W \mid R): P(W=0 \mid R=0), P(W=0 \mid R=1): 2$ parameters
- $P(C, R)$:

Conditional independence reduce complexity?

- Conditionally independent: $P(C, R, W)=P(W \mid R, C)=P(W \mid R)$
- How many parameters?
- $P(C, R, W)=P(W \mid C, R) P(C, R)=P(W \mid R) P(C, R)$
- $P(W \mid R): P(W=0 \mid R=0), P(W=0 \mid R=1): 2$ parameters
- $P(C, R): 3$ parameters

Conditional independence reduce complexity?

- Conditionally independent: $P(C, R, W)=P(W \mid R, C)=P(W \mid R)$
- How many parameters?
- $P(C, R, W)=P(W \mid C, R) P(C, R)=P(W \mid C) P(C, R)$
- $P(W \mid R): P(W=0 \mid R=0), P(W=0 \mid R=1): 2$ parameters
- $P(C, R): 3$ parameters
- $P(C, R, W)=P(W \mid C, R) P(C, R): 5$ parameters

Conditional independence reduce complexity?

- Tabular representation P(C,R,W)
- General case: 7 parameters
- Fully independent case: 3 parameters
- Conditionally independent: 5 parameters

