Mathematics for AI

Lecture 27

Statistical Estimation, Maximum Likelihood Solution Introduction to Optimization

Statistical Estimation

Sampling => sample x', x2, -- , xm < sample x', x2, -, xm estimation

Estimation Parametric / Non parametric

$$P_1 = P_1$$
 P(X=2)=P_2 = P_2
 $P_1+P_2+\cdots+P_6 = 1$
 $X'_1 X'_2 X'_3 - \cdots - X''_m$ $\Theta = \begin{bmatrix} P_1 \\ P_2 \\ P_6 \end{bmatrix}$
 $P_1(X=X) = P_2 \quad ne(1,2,...,6)$
 $Y'_1 X'_2 - ... X''_m \quad i.i.d independent$
 $X'_1 X'_2 - ... X''_m \quad i.i.d independent$

The likelihood function

Maximum Likelihood (ML) Solution

= argmax 100 m, log P, +m2 log P2+-+ m5 log P5. + mg log (1- EP.;) 0 = [P. P2 -- P5] log-likelihood $\frac{\partial}{\partial P_1}LL(\theta) = \frac{m_1}{P_1} + m_2 \frac{-1}{1 - \sum_{i=1}^{n} P_i} = 0 \quad LL(\theta)$ $\frac{2}{2R_i} Ll(\theta) = \frac{m_i}{P_i} + m_0 - \frac{1}{1 - \sum P_i} = 0 \quad i = 1, \dots, 5$ $\implies \frac{m_1}{P_1} = \frac{m_2}{P_2} = \frac{m_3}{P_3} = \dots = \frac{m_5}{P_5} = \frac{m_6}{1 = 2P_i} = \frac{m_6}{P_6} = \frac{1}{2}$

. N. Toos iversity of Technology

Example: Normal Distribution

Example: Normal Distribution $P(n) = \frac{1}{\sqrt{2\pi}} \sigma^{-\frac{1}{2}} \sigma^{-\frac{$ $\Theta = [\mu, 00]$ samples μ', n^2, \dots, n^n Like lihood $L(\Theta) = L(\mu, \sigma) = P(n'-n^m) = \prod_{\substack{i=1 \\ j \in \mathbb{Z}}} P(n^i)$ = $\prod_{\substack{i=1 \\ j \in \mathbb{Z}}} \frac{1}{\sigma^2} \left(\frac{m^i - \mu}{\sigma^2} \right)^2$

Example: Normal Distribution - ML Solution

 $\Rightarrow ll(\theta) = -m \log \sqrt{2\pi} - m \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (m - \mu)^2$ $\frac{\partial ll(\theta)}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^{m} (-2)(n^{i} - \mu) = 0 = 7 \sum_{i=1}^{m} (n^{i} - \mu) = 0$ $= \overline{\chi} = \frac{1}{2} \frac{1$ $\frac{\partial ll(0)}{\partial \sigma} = -\frac{m}{\sigma} - \frac{1(-2)}{2\sigma^3} \sum (\mu^{i} - \mu)^2 = 0$ $\Rightarrow -m + \frac{1}{\sigma^2} \sum_{i=1}^{m} (n^{i} - \mu)^2 = 0$ $\sigma^{*2} = \frac{1}{m} \sum_{m=1}^{m} (m^* - m)^2$

K. N. Toosi University of Technology

Exercise

Exercise: find ML solution for $n \in (a,b]$ uniform dist. $U[a,b] = p(n) = \{b-a \ n \in (a,b]\}$ exponential dist. p(n) = Are 2

Exercise

Exercise: N(M, E) P multivariable Gaussian $P(x) = \frac{1}{(2\pi)^{d_2}} \exp(-\frac{1}{2}(x-x)) \tilde{\Sigma}(x-x))$ $X \in \mathbb{R}^d$ $ll(\vec{\mu}, \Sigma)$ x', x^2, \dots, x^m ML Solution: MX = In Z Xi $\sum_{m=1}^{*} \sum_{m=1}^{m} (x^{n} - \mu^{*}) (x^{n} - \mu^{*})^{T}$

Maximum Likelihood General Approach

& Find L(0) or ll(0) $\nabla_{1}(\theta) = 0 \implies \theta = \sqrt{2}$ $\theta = (\theta_1, \theta_2, -, \theta_n)$ $\nabla_{L}(\theta) = \begin{bmatrix} \frac{\partial L}{\partial \theta_{1}} \\ \frac{\partial L}{\partial \theta_{2}} \\ \frac{\partial L}{\partial \theta_{2}} \end{bmatrix} = 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} n - equation, \\ n - unknown \\ 0 \\ 0 \end{bmatrix}$

Maximum Likelihood General Approach

$$\begin{aligned} \theta &= (\theta_1, \theta_2, -, \theta_n) \\ \nabla_{L}(\theta) &= \begin{bmatrix} \frac{\partial L}{\partial \theta_1} \\ \frac{\partial L}{\partial \theta_2} \\ \frac{\partial L}{\partial \theta_1} \end{bmatrix} = 0 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} & \begin{bmatrix} n - equation, \\ n - unknown \\ n - u$$

K. N. TOOS Iniversity of Technolog

Example: Mixture of Gaussians

Example: $p(n) = \frac{1}{3} \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{1}{2} \frac{(n-\mu_1)^2}{\sigma_1^2}} + \frac{1}{3} \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{1}{2} \frac{(n-\mu_2)^2}{\sigma_2^2}} + \frac{1}{3} \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{1}{2} \frac{(n-\mu_2)^2}{\sigma_2^2}}$ mixture of Gaussrans. Q 5 [0 M1, 0, M2, 02) $\Rightarrow n^* = \operatorname{argmax}_{\Theta} L(\Theta)$ L. Hard to find global optimum

Remember: Learning from data

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i

Remember: Learning from data: Cost function $X \in \mathbb{R}^{m} \rightarrow f_{0} \rightarrow y = f(\theta, X)$

• choose θ such that $f(\theta, x_i)$ is close to y_i

Cost function

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - cost function:

$$C(\theta) = \Sigma_{i=1..N} d(f(\theta, x_i), y_i)$$

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - \circ cost function:

$$C(\theta) = \sum_{i=1..n} d(f(\theta, x_i), y_i)$$

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - \circ cost function:

$$C(\theta) = \sum_{i=1..n} d(f(\theta, x_i), y_i)$$

model output given x_i

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - \circ cost function:

$$C(\theta) = \sum_{i=1..n} \frac{d(f(\theta, x_i), y_i)}{\oint}$$

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - \circ cost function:

$$C(\Theta) = \Sigma_{i=1..n} \| f(\Theta, x_i) - y_i \|^2$$

distance

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - cost function:

$$C(\Theta) = \Sigma_{i=1..n} d(f(\Theta, x_i), y_i)$$

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - \circ cost function:

$$C(\Theta) = \Sigma_{i=1..n} d(f(\Theta, x_i), y_i)$$

choose Θ such that $C(\Theta)$ is small

$$\mathbf{x} \in \mathbb{R}^{m} \rightarrow \mathbf{f}_{\theta} \rightarrow \mathbf{y} = \mathbf{f}(\theta, \mathbf{x})$$

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
 - choose θ such that $f(\theta, x_i)$ is close to y_i
 - cost function:

$$C(\Theta) = \Sigma_{i=1..N} d(f(\Theta, x_i), y_i)$$

$$\Theta^* = \operatorname{argmin}_{\Theta} C(\Theta)$$

Optimization: Continuous vs Discrete

Optimization $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ $f: S \longrightarrow \mathbb{R}$ O $S \subseteq \mathbb{R}^{d}$ f(x) $X^* = \operatorname{argmin}_X f(X)$ $X^* = \operatorname{argmax}_X f(X)$ Continuous Optimization Discrete Optimization Combinatorial) f(0, x) = Ax+b

Remember: Linear Regression

 $C(\theta) = C(A,b) = \sum_{i=1}^{m'} ||Ax^{i}b - y^{i}||^{2}$ $\partial A = 0_{m \times n}$ C \vec{r} => closed form solution

Iterative Optimization Algorithms

In most cases we cannot solve $\frac{\partial C}{\partial \theta} = 0$ for θ . f(x) In

Steepest Descent

 $D[u]f(x) = \nabla_{f}^{T}u$ 1/4/1=1 $rac{1}{3}u = \frac{\nabla p}{\|\nabla p\|} = \arg \max \nabla p u$ steepest ascend s.t. $\|u\| = 1$ u = - VF/11Vell = argmin Vfu steepest descend || u11=1

Level Curves

Level Curves and the Gradient Vector

