Mathematics for AI

Lecture 3

Matrices

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
7 & 2 & -1 & 3 \\
1.5 & 7 & 4 & 5
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{lll}
a[0,0] & a[0,1] & a[0,2] a \\
a[0,3,0]
\end{array}\right]\left[\begin{array}{lll}
& {[1,1]} & a[1,2] \\
a[1,3]
\end{array}\right] \\
& \in \mathbb{R}^{3 \times 4} \in \mathbb{Z}^{m \times n} \in \mathbb{C}^{m \times n}
\end{aligned}
$$

Vectors as special matrices?

$$
\begin{aligned}
& V=\left[\begin{array}{l}
1 \\
0.5 \\
7 \\
2
\end{array}\right] \in \mathbb{R}^{4} \quad \in \mathbb{R}^{n} \in \mathbb{C}^{n} \\
& \text { column } \\
& \text { vector }\left[\begin{array}{c}
0.5 \\
7 \\
2
\end{array}\right] \in \mathbb{R}^{n \times 1} \quad\left[\begin{array}{llll}
1 & 0.5 & 7 & 2
\end{array}\right] \in \mathbb{R}^{\mid \times n}
\end{aligned}
$$

Multiplying a matrix by a vector

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 2 \\
-1 & 0 & 7 \\
3 & 2
\end{array}\right]\left[\begin{array}{c}
4 \\
1 \\
1
\end{array}\right]\left[\begin{array}{c}
10 \\
20 \\
-10 \\
30
\end{array}\right]=\left[\begin{array}{c}
100 \\
0 \\
60
\end{array}\right]=\left[\begin{array}{l}
1 \times 10+2 \times 20+7 \times(-10)+4 \times 30 \\
-11 \times 10+0 \times 20+2 \times(-10)+1 \times 30 \\
3 \times 10+2 \times 20+1 \times(-10)+0 \times 30
\end{array}\right]} \\
A \in \mathbb{R}^{3 \times 4} \\
u \in \mathbb{R}^{4} \quad v \in \mathbb{R}^{3} \\
{\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right] \times(10)+\left[\begin{array}{c}
2 \\
0 \\
2
\end{array}\right] \times(20)+\left[\begin{array}{c}
7 \\
2 \\
1
\end{array}\right] \times(-10)+\left[\begin{array}{c}
4 \\
1 \\
0
\end{array}\right] \times(30)}
\end{gathered}
$$

linear combination of columns of A

Multiplying a matrix by a vector

$$
\begin{aligned}
& \text { linear combination of columns of } A \\
& {\left[\bigcup_{m \times 3} \bigcap_{a_{1}}^{3}\left(a_{2}\right)\left[\begin{array}{l}
a_{3} \\
a_{1}
\end{array}\right]\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right]=\gamma_{1}\left(a_{1}\right)+\gamma_{2}\left(a_{2}\right)+\gamma_{3}\left(a_{3}\right) \in \mathbb{R}^{m \times 1}\right.} \\
& a_{i} \in \mathbb{R}^{m \times 1}
\end{aligned}
$$

Define span in matrix form

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\{\underbrace{\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{n} u_{n}}_{u_{i} \in \mathbb{R}^{m}} \mid \alpha_{i} \in \mathbb{R}\} \\
=u_{i}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& U=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right] \in \mathbb{R}^{m_{2 n}}
\end{aligned}
$$

Column space

$$
\begin{aligned}
& \underline{U}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right] \in \mathbb{R}^{m \times n} \\
& \text { span }\left(u_{1}, u_{2}, \ldots, u_{n}\right) \\
& =\text { column space of } U \\
& ==\text { range of } U \\
& =\left\{U a \mid a \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

Column space

$$
U=\left[\begin{array}{ll}
u_{1} & u_{2} \\
u_{1}, u_{2} \in R^{3}
\end{array}\right.
$$

Linear Subspace

Let V be a vector space. A subset $S \subseteq V$ is called a linear subspace of V if

- For all $u \in S$ and all $a \in R \Rightarrow a u \in S$.
- For all $u, v \in S \Rightarrow u+v \in S$.

Alternatively,

- For all $u, v \in S$ and $a, \beta \in R \Rightarrow a u+\beta v \in S$.

Linear Subspace

K. N. Toosi

$$
u \in S \Rightarrow \alpha u \in S
$$

$$
u+v \in S \Rightarrow u+v \notin S
$$

Data as columns of the matrix row-major programming languages

Representing Data and Data Batches

Memory

2088	0
	1
2096	2
	3100
	10
	11
12	
13	
20	
21	
22	
23	

Memory

column by column

Memory

	2088
2092	0
2096	1
	2100
	3
	10
11	
12	
13	
20	
21	
22	
23	

Row Major

Memory

2088	0
2092	10
2096	20
2100	1
	11
	21
	2
	12
	22
	3
	13
	23

Column Major

Memory

Memory

2088	0
	092
2096	10
2100	20
	1
	11
21	
2	
12	
22	
3	
13	
23	

Column Major (Fortran, Matlab, R, ...)

Data as rows of the matrix row-major programming languages

$$
\begin{aligned}
& n=U \text {. shape }[0] \text { : \# of data(feefure vectors) } \\
& m=\text { U.Shape }[1] \text { : \# of features } \\
& U[i, i] \quad U[i] \\
& u_{i} \in \mathbb{R}^{m} \quad u_{i}^{T} \in \mathbb{R}^{1 \times m}
\end{aligned}
$$

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

ND Arrays: Row-major vs. Column-major

- What does row-major and column-major mean?
- Matlab vs Numpy ND-arrays
- Row-major: last index moves fastest

Linear combination of matrix rows

$$
\begin{array}{r}
U\left[i^{\prime},!\right] \quad U[i] \quad u_{i} \in \mathbb{R}^{m} u_{i}^{\top} \in \mathbb{R}^{1 \times m} \\
{\left[\begin{array}{l}
\alpha_{1}-a_{2} \ldots \alpha_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbb{R}^{1 \times n} \\
\sim_{u_{1}^{\top}} \\
u_{2}^{\top} \\
\vdots \\
u_{n}^{\top}
\end{array}\right]=\underbrace{\alpha_{1} u_{1}^{\top}+\alpha_{2} u_{2}^{\top}+\cdots+\alpha_{n} u_{n}^{\top}}_{\in \mathbb{R}^{1 \times m}} \in \mathbb{R}^{1 \times m}}
\end{array}
$$

Span of the rows of the matrix

$$
\begin{align*}
& {\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right]\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right]=\left[\begin{array}{cc}
\alpha_{1} u_{1}+\alpha_{2} v_{1}+\alpha_{3} w_{1} & \alpha_{1} u_{2}+\alpha_{2} v_{2}+\alpha_{3} \\
w_{2}
\end{array}\right]} \\
& u=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad v \in\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad w \in\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \\
& \operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left\{\sum \alpha_{i} u_{i} \mid \alpha_{i} \in \mathbb{R} \quad i_{i}=1 \ldots n\right\} \\
& \begin{aligned}
U=\left[\begin{array}{c}
u_{1} T \\
u_{2} T \\
\vdots \\
u_{n}^{\top}
\end{array}\right] \quad a=\left[\begin{array}{cc}
a^{\top} U & \left.\mid a \in \mathbb{R}^{n}\right\} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{n}
\end{array}\right] \in \mathbb{R}^{n} \quad a^{T}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n}
\end{array}\right]
\end{aligned}
\end{align*}
$$

Row space of a matrix

$$
\begin{aligned}
& \text { The row space of a matrix } A \in \mathbb{R}^{m \times n} \\
& =\text { span of rows of } A \\
& =\left\{C^{\top} A \mid c \in \mathbb{R}^{m}\right\}\left[c_{1} c_{2} c, 45\right] \\
& \quad \stackrel{?}{=}\left\{A^{\top} c \mid c \in \mathbb{R}^{m}\right\}
\end{aligned}
$$

Functions

- Also maps, Transformations,
- What is a function?
functions / maps / tranformations

$$
f: X \rightarrow Y
$$

$$
\operatorname{Domain}(f)=X
$$

$$
\operatorname{Codoman}(f)=r
$$

$$
\operatorname{Range}(f)=\{f(x) \mid x \in X\}
$$

Functions
functions / maps / tranformations
$f: X \rightarrow Y$.
$\operatorname{Domain}(f)=X$
$\operatorname{codomain}(f)=r$
$\operatorname{Rarge}(f)=\{f(x) \mid x \in X\}$
f: one-to-one (injective) $f(x)=f(y) \Rightarrow x=y$
f : onto (surjective) Range $(f)=Y$

$$
\text { जe } \quad \forall y \in Y \quad \exists x \in X: f(x)=y
$$

f: one-to-one \& onto (bijective)

Functions
f: one-to-one \& onto (bijective)

$$
\Rightarrow
$$

Inrertible siveres
bijective $\exists g$ such that $g(f(x))=x \quad \forall x \in X$

$$
\begin{gathered}
\exists g Y \rightarrow X \\
g=f^{-1}
\end{gathered}
$$

$$
f(g(y))=y \quad \forall y \in Y
$$

Functions in linear algebra

- Here, we are interested in functions from a vector space V to a vector space U

$$
(f: U \rightarrow V)
$$

Linear Transformations
A linear map $f: V \rightarrow U$

1. $f(u+v)=f(u)+f(v) \quad \forall u, v \in V$
2. $f(\alpha u)=\alpha f(u) \quad \forall u \in V, \alpha \in \mathbb{R}$ \mathbb{C}

$$
\begin{array}{cc}
1,2 \Leftrightarrow f(\alpha \underline{u}+\beta v)=\alpha f(u)+\beta f(v) & \forall u, v \in V \\
f(\alpha u)+f(\alpha v) & \forall \alpha, \beta \in \mathbb{R}
\end{array}
$$

A lineap map preserves linear combinations

Linear Transformations

$$
\begin{aligned}
& f(u+v)=f(u)+f(v) \\
& f(a u)=a f(u)
\end{aligned}
$$

does not matter if linear combination applied before or after transformation.

