Mathematics for AI

Lecture 31
Convex Functions

Convex Functions

Convex Functions

Convex Functions

If for any $x_{1}, x_{2} \in \mathbb{R}$

$$
f\left(\alpha x_{1}+(1-\alpha) n_{2}\right) \leqslant \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

then funds's for all $\alpha \in[0,1]$
or for all $\alpha \in(0,1)$

Convex Functions

If for any $x_{1}, x_{2} \in \mathbb{R}$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leqslant \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

themenix's for all $\alpha \in[0,1]$
or for all $\alpha \in(0,1)$
$\Longrightarrow f$ ir called a convex function.
\downarrow.

Convex Functions

For convex functions every local minimum is a global minimum.

Convex Functions

Convex functions might not have a minimum, or the minimum (infimum) might not be achieved (there is no argmin).

Convex Functions must have a convex domain
$f: D \rightarrow \mathbb{R}$
D is a convex set.

Strictly Convex Functions
\rightarrow A function $f: \longrightarrow \mathbb{R}$ is called strictly convex if D convex

$$
f\left(\alpha x_{1}+x_{2}^{(1-\alpha)}\right)<\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in \mathbb{R}_{D}$ and all $\alpha \in(0,1)$.
For strictly convex functions the minimum point is unique (if exists).

Strictly Convex Functions
$f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$
D: Convex
$\beta=1-\alpha$
$\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
Gnvex $f\left(\alpha \vec{x}_{1}+\beta \vec{x}_{2}\right) \leqslant \alpha f\left(\vec{x}_{1}\right)+\beta f\left(\vec{x}_{2}\right)$ strictly convex f $\left(\alpha \vec{x}_{1}+\beta \vec{x}_{2}\right)<\alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right)$

$$
\begin{gathered}
\alpha \in(0,1) \\
\beta=1-\alpha
\end{gathered}
$$

f is strictly convex $\Rightarrow \underset{x \in D}{\operatorname{argmin}} f(x)$ is unique or non-existent

Sublevel sets of a convex function
level set, level curve

level set $\left\{x \mid f(x)=y_{0}\right\}$ sub-level set $\left\{x \mid f(x) \leqslant y_{0}\right\}$

For convex functions sub-level sets are $\%$ convex.

Epigraph sets of a convex function
epigraph

$$
\begin{aligned}
f: D \rightarrow \mathbb{R} \quad \text { epigraph }(f)=\{(x, y) & \mid x \in D, y \in R, \\
y & \geqslant f(x)\}
\end{aligned}
$$

f : convex function $\Rightarrow \operatorname{epigraph}(f)$ is a convex set

Concave functions

Concave function strictly concave.

$f:$ convex $\Longleftrightarrow-f$ sncare

Example:

$$
f(x)=x^{3}
$$

not conve hot nor concave.

$$
f(x)=x^{2}
$$

convex
not concave

Affine functions are both convex and concave

$$
\text { f: is both } f(x)=a
$$

Affine functions are both convex and concave

$$
f(x)=a^{\top} x+b \quad \text { affine }
$$

both convex \& concave.

Gradient and Convexity
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex \mathbb{R} differentiable at x_{0}.

$$
\begin{aligned}
& f\left(x_{0}\right)+\nabla_{f}\left(x_{0}\right)^{\top}\left(x-x_{0}\right) \leqslant f(x) \\
& \left.{ }_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right) \leqslant f(x)
\end{aligned}
$$

Gradient and Convexity (first order convexity condition)

What about non-differentiable convex functions?

What if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Convex, but not differentiable at x_{0}
$\xrightarrow[y=m_{3} x]{f(x)=|x| \text { not differentiable at } 0 \text {. }} \begin{aligned} & f=m_{1} x \\ & y=m_{2} x\end{aligned}$

Subgradient

$m_{1}, m_{2}, 0$ are subgradients of f : f sonvex, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subgrad f at x_{0}

$$
\begin{aligned}
& \text { ograd } f \text { at } x_{0} \\
& =\left\{m \in \mathbb{R}^{n} \mid f\left(x_{0}\right)+m^{\top}\left(x-x_{0}\right) \leqslant f(x)\right.
\end{aligned}
$$

1D convex functions and second derivative
$f: \mathbb{R} \rightarrow \mathbb{R}$ convex \& twice differentiable
$\Longrightarrow f^{\prime \prime}\left(x_{0}\right)$ exists $f^{\prime \prime}\left(x_{0}\right) \geqslant 0$

Hessian and convexity (second order convexity condition)
$f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ convex \& twice differentiable at $x_{0} \Longrightarrow$ Hessian $H_{f}\left(x_{0}\right)$ exists.
\Rightarrow curvature is positive in all directions

$$
\forall u \in \mathbb{R}^{n} \quad u^{\top} H_{f}\left(x_{0}\right) u \geqslant 0
$$

tu $u^{\top} H u \geqslant 0 \Rightarrow H$ is positive definite

Hessian and convexity (second order convexity condition)
$f: D \rightarrow \mathbb{R} \quad$ Hessian exists for $1 l(D$ and is $\rightarrow f$ convex BSD
is $P D \rightarrow f$ strictly convex

Hessian and convexity (second order convexity condition)

How to check if a function is convex. (VI)
\Longrightarrow Compute Hessian

$$
\begin{aligned}
& f(x)=\frac{1}{2} x^{\top} A x+b^{\top} x+c \quad \text { quadratic } \\
& H_{f}(x)=A \quad A \text { positive definite } \Rightarrow f \text { convex } \\
& A \text { negative " } \Rightarrow f \text { concave }
\end{aligned}
$$

Convex functions properties

$$
f \text { convex } \Rightarrow-f \text { concave }
$$

Convex functions properties

$$
\begin{aligned}
& f_{1}, f_{2}, \ldots, f_{n} \text { convex } \\
& \sum_{i} \alpha_{i} f_{i}(x) \text { convex } \alpha_{i} \in \mathbb{R} \\
& \quad \text { provided that } \alpha_{i} \geqslant 0
\end{aligned}
$$

Convex functions properties
$\begin{array}{ll}\text { when is } f \circ g(x) \text { convex? } & g: \mathbb{R}^{n} \rightarrow \mathbb{R} \\ \beta=1-\alpha & f: \mathbb{R} \rightarrow \mathbb{R}^{n}\end{array}$

$$
f\left(g(x) f\left(g\left(\alpha x_{1}+\beta x_{2}\right)\right) \leqslant \alpha f\left(g\left(x_{1}\right)\right)+\beta f\left(g\left(x_{2}\right)\right)\right.
$$

g convex $g\left(\alpha x_{1}+\beta x_{2}\right) \leqslant \alpha g\left(x_{1}\right)+\beta g\left(x_{2}\right)$
f: Hexneasmopel non-decreas sig
f. convex ${ }^{f}$

$$
\begin{aligned}
& f\left(g\left(\alpha x_{1}+\beta x_{2}\right)\right)\left(\alpha\left(\alpha g\left(x_{1}\right)+\beta g\left(x_{2}\right)\right)\right. \\
& f\left(\alpha g\left(x_{1}\right)+\beta\left(g\left(x_{2}\right)\right) \leqslant \alpha f\left(g\left(x_{1}\right)\right)+\beta f\left(g\left(x_{2}\right)\right)\right.
\end{aligned}
$$

