Mathematics for AI

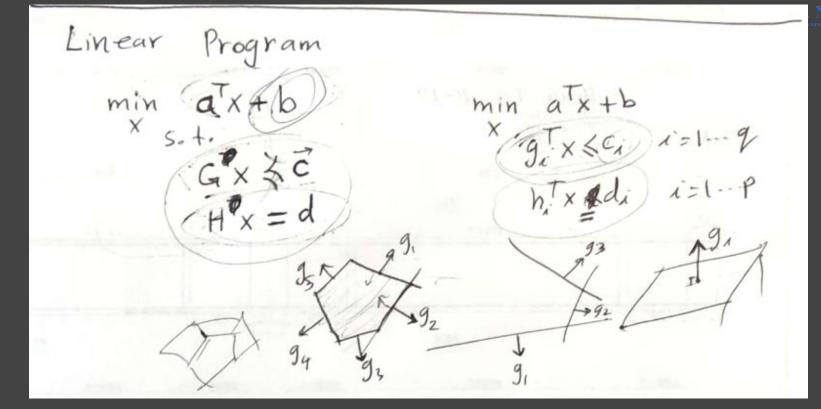
Lecture 33

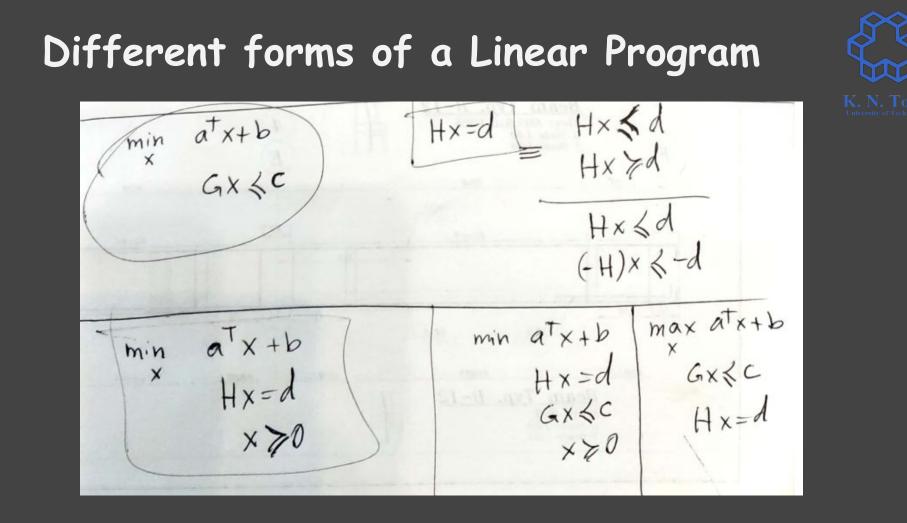
Convex Optimization, Duality examples, Suboptimality Check, KKT conditions

Convex Optimization (Standard form)

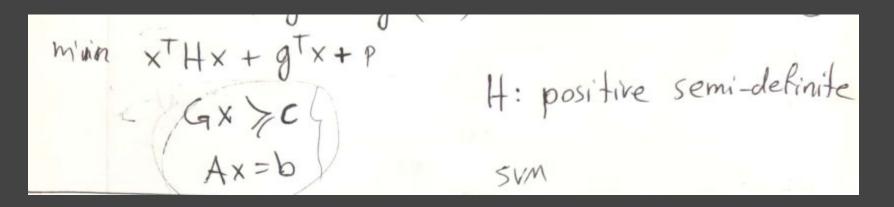
Convex Optimization (standard form) min f(x) subject to $g_i(x) \leq 0$ i=1,2,...,PAx = b $A \in \frac{1}{18^{9 \times n}}$ Def convex gi convex be IRY for most convex optimization problems strong duality holds. (slater's conditions), etc.) Z*=×*

Linear Programming (LP)





Quadratic Programming



Remember: Dual Problem

Remider: Dual Problem
y'= min
$$f(x)$$
 Primal $z=max f(\lambda, M)$ Dual
problem
subject to
 $g(x) \leq \overline{0}$
 $h(x) = \overline{0}$
Lagrangian
 $L(x, \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$
 $g(x) \leq 0, h(x) = 0, \lambda \neq 0 \implies L(x; \lambda, \mu) \leq f(x)$
 $f'(\lambda, \mu) = \min L(x, \lambda, \mu)$
 $z^* \leq y^*$ weak duality / $y^* z^*$ duality gap
if $z^* = y^* \implies$ strong duality hold \Rightarrow duality $gap = 0$

Suboptimality check

$$z^{*} \leqslant y^{*} \operatorname{weak} \operatorname{duality} / y^{*} z^{*} \operatorname{duality} gap$$
if $z^{*} = y^{*} \Rightarrow \operatorname{strong} \operatorname{duality} \operatorname{hold} \Rightarrow \operatorname{duality} gap = 0$

$$z^{*} \leqslant y^{*} \operatorname{weak} \operatorname{duality} \operatorname{hold} \Rightarrow \operatorname{duality} gap = 0$$

$$z^{*} \leqslant y^{*} \Rightarrow \operatorname{strong} \operatorname{duality} \operatorname{hold} \Rightarrow \operatorname{duality} gap = 0$$

$$z^{*} \leqslant y^{*} \Rightarrow \operatorname{strong} \operatorname{duality} \operatorname{hold} \Rightarrow \operatorname{duality} gap = 0$$

$$z^{*} \leqslant y^{*} \Rightarrow \operatorname{strong} \operatorname{duality} \operatorname{hold} \Rightarrow \operatorname{duality} gap = 0$$

$$z^{*} \leqslant y^{*} \Rightarrow \operatorname{strong} \operatorname{duality} \operatorname{hold} \Rightarrow \operatorname{duality} gap = 0$$

$$z^{*} \leqslant y^{*} \Rightarrow \operatorname{strong} \operatorname{duality} \operatorname{strong} \operatorname{duality} \operatorname{strong} \operatorname{str$$

. N. 1008 iversity of Technolog

Suboptimality

$$z^{*} \leqslant y^{*} \operatorname{weak} \operatorname{duality} / y^{*} z^{*} \operatorname{duality} gap$$
if $z^{*} = y^{*} \Rightarrow \operatorname{strong} \operatorname{duality} \operatorname{hold} \Rightarrow \operatorname{duality} gap = 0$

E-suboptimel solution: \tilde{x} $g(\tilde{x}) \leqslant 0, \operatorname{h}(\tilde{x}) = 0, \quad f(\tilde{x}) - y^{*} \leqslant \varepsilon$

 $x, \mu, \lambda: g(x) \leqslant 0, \operatorname{h}(x) = 0, \lambda \geqslant 0$ $f(x) \geqslant f^{*}(\lambda, \mu)$.

stop when

 $stop$ when

 $f(x) - f^{*}(\lambda, \mu) \leqslant \varepsilon$

 $f(x) = y^{*} \leqslant f(x) - f^{*}(\lambda, \mu) \leqslant \varepsilon$

 $f(x) = f^{*}(\lambda, \mu) \leqslant \varepsilon$

 $f(x) = f^{*}(\lambda, \mu)$

 $f(x) = f^{*}(\lambda, \mu)$

 $f(x) = f^{*}(\lambda, \mu)$

. N. 1008 iversity of Technology

Dual of a QP

Dual to for QP Min 1/2 XTHX+gTX s.t. CUMPAND, DAX=b $L(x, p, x, \mu) = \frac{1}{2} x^T H x + g^T x + \lambda^T (G x - c) + \mu^T (A x - b)$ $L(x,\lambda,\mu) = \frac{1}{2} \times^T H \times + (g + G^T \lambda + A^T \mu) \times = \lambda C - \mu T b$ $\frac{\partial L}{\partial x} = Hx + g + G^{7} + A^{T} = 0 \Rightarrow x = H^{-1}(g + G^{7} + A^{T} = 0)$

Dual of a QP (simple case: no equality
cons

$$\frac{MOMDER}{MOMDER} = \frac{1}{2}(g+G^{T}\lambda)^{T}H^{-1}(g+G^{T}\lambda) + f^{T}(g+G^{T}\lambda) + f^{T}(g+G^{$$

Dual of a QP (General Case)

min 1/2 xTHX +gTX s.t. GXKC, AX=b $L(x,\lambda,\mu) = \frac{1}{2} \times^{T} H \times + g^{T} \times + \lambda^{T} (G \times - C) + \mu^{T} (A \times - b)$ $= \frac{1}{2} x^{T} H x + (g + G^{T} \lambda + A^{T} \mu)^{T} x - \lambda^{T} c - \mu^{T} b$ $\frac{\partial L}{\partial x} = Hx + (g + G^T \lambda + A^T \mu) = 0$ $\Rightarrow x^* = -H^{-1}(q+G^T\lambda+A^T\mu)$

Dual of a QP (General Case)

$$\frac{\partial L}{\partial x} = Hx + (g + G^{T}\lambda + A^{T}\mu) = 0$$

$$\Rightarrow x^{*} = -H^{-1}(g + G^{T}\lambda + A^{T}\mu)$$

$$f^{*}(\lambda,\mu) = \min L(x,\lambda,\mu) = L(x^{*},\lambda,\mu)$$

$$= \frac{1}{2}(g + G^{T}\lambda + A^{T}\mu)H^{-1}(g + G^{T}\lambda + A^{T}\mu)$$

$$= (g + G^{T}\lambda + A^{T}\mu)H^{-1}(g + G^{T}\lambda + A^{T}\mu) - \lambda^{T}c - \mu^{T}b$$

$$= -\frac{1}{2}(g + G^{T}\lambda + A^{T}\mu)H^{-1}(g + G^{T}\lambda + A^{T}\mu) - \lambda^{T}c - \mu^{T}b$$

$$= -\frac{1}{2}(g + G^{T}\lambda + A^{T}\mu)H^{-1}(g + G^{T}\lambda + A^{T}\mu) - \lambda^{T}c - \mu^{T}b$$

$$= -\frac{1}{2}(g + G^{T}\lambda + A^{T}\mu)H^{-1}(g + G^{T}\lambda + A^{T}\mu) - \lambda^{T}c - \mu^{T}b$$

$$= -\frac{1}{2}(g + G^{T}\lambda + A^{T}\mu)H^{-1}(g + G^{T}\lambda + A^{T}\mu) - \lambda^{T}c - \mu^{T}b$$

$$= -\frac{1}{2}g^{T}H^{-1}_{T}[A^{T}] - [c^{T}b^{T}][A^{T}]$$

$$= -\frac{1}{2}g^{T}H^{-1}_{T}g$$

$$= -\frac{1}{2}g^{T}H^{-1}_{T}g$$

Dual of an LP

min CX GXZd Ax=b $L(x,\lambda,\mu) = c^{T}x + \lambda^{T}(Gx-d) + \mu^{T}(Ax-b)$ = $(C + RGT_2 + AT_A)^T - 2Td - uTb$ if C+GT2+An =0 $f^{*}(\lambda,\mu) = \min_{X} L(x,\lambda,\mu) = \begin{cases} -\infty & \text{if } C+G^{*}\lambda+A^{*}\mu=0 \\ -\lambda^{*}d-\mu^{*}b & \text{if } C+G^{*}\lambda+A^{*}\mu=0 \end{cases}$

Dual of an LP

$$f^{*}(\lambda_{1}, \mu) = \min_{X} L(x, \lambda_{1}, \mu) = \begin{cases} -\infty & \text{if } c + G^{T} + A^{T}_{\mu} \neq 0 \\ -\lambda^{T}_{\mu} - \mu^{T}_{\mu} b & \text{if } c + G^{T}_{\mu} + A^{T}_{\mu} = 0 \end{cases}$$

$$dual \text{ problem:} & \text{max } f^{*}(\lambda_{1}, \mu) = & \text{max } f^{*}(\lambda_{1}, \mu) = \\ \lambda_{1}^{\mu} + \frac{1}{2} + \frac{1}{$$

Assume that we have fund optimit an optimal solution x* for prind, and an optimal solution \$\$ 2,4 for the dual problem $y^* = f(x^*)$ $z^* = f^*(\lambda^*, \mathcal{A}^*)$

$$X^* = \operatorname{argmin}_{X} f(x) \quad \text{s.t. } g(x) \leq 0, \quad h(x) = 0$$

$$X^* = \operatorname{argmin}_{X} f^*(\lambda, \mu) \quad \text{s.t. } \lambda \geq 0$$

$$\lambda_{\lambda, \mu}$$

$$\operatorname{Duality}_{X} Gap = 0 \implies f(x^*) = y^* = z^* = f^*(\lambda^*, \mu)$$

K. N. Toosi

Duality Gap = 0
$$\Rightarrow$$
 $f(x^*) = y^* = z^* = f^*(\lambda^*, \tilde{\lambda})$
 $f(x^*) = f^*(\lambda^*, \mu^*)$
 $= \min L(x, \lambda^*, \mu^*)$
 $\swarrow L(x^*, \lambda^*, \mu^*)$
 $= f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $= f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $g_x(x^*) = 0$
 $g_x(x^*) = 0$
 $= f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $= f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $= f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $= f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \lambda^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \mu^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \mu^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \mu^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \mu^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \mu^* Tg(x^*) + \mu^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \mu^* Tg(x^*) + \mu^* Tg(x^*) + \mu^* Th(x^*)$
 $f(x^*) = 0$
 $f(x^*) + \mu^* Tg(x^*) + \mu^* Tg(x^*)$

$$f(x^*) = f^*(\lambda^*, \mu^*)$$

$$= \min L(x, \lambda^*, \mu^*)$$

$$= f(x^*) + \lambda^{\mu} g(x^*) + \mu^{\mu} h(x^*)$$

$$= f(x^*) + \lambda^{\mu} g(x^*) + \mu^{\mu} h(x^*)$$

$$= f(x^*) + \lambda^{\mu} g(x^*) + \mu^{\mu} h(x^*)$$

$$g_{x}(x^*) = 0 \qquad = f(x^*) + \frac{g}{2} \chi^* g(x^*) + \frac{g}{2} \chi^* g(x^*)$$

$$\Rightarrow \begin{cases} f(x^*) = 0 \\ f(x^*) = 0 \\ f(x^*) = 0 \end{cases}$$

$$= f(x^*) + \frac{g}{2} \chi^* g(x^*) = 0$$

$$\Rightarrow f_{ind} = solution to prival problem \\ having = solution (A^*, \mu^*) + o \\ he dual problem \\ have dual problem \\ f(x^*) = 0 \\ for oll i = 1 - p$$

$$L(x^*, \lambda^*, \mu^*) = \min L(x, \lambda^*, \mu^*)$$

$$\Rightarrow find a solution to primal problem
$$\Rightarrow find a solution (\lambda^*, \mu^*) + o$$

$$\max g a solution (\lambda^*, \mu^*) + o$$

$$\max g a solution (\lambda^*, \mu^*) + o$$$$

Necessary conditions for optimality

 $\begin{cases} g(x) \neq 0 \\ h(x^{*}) = 0 \\ \lambda^{*} \neq 0 \\ \lambda^{*}_{i} g_{i}(x^{*}) = 0 \end{cases}$ $x^{*} = \arg \min L(x, \lambda^{*}, \mu^{*})$

Necessary conditions for optimality - differentiable case for optimal X*, 2*, ux MA33 9 g(x*) 60 $N(X^*) = 0$ 2*>0 7.9.(x+)=0 $x^* = \operatorname{arg\,min}_{X} L(x, \lambda^*, \mu^*) = \operatorname{argmin}_{X} f(x) + \lambda^* g(x) + \mu^* h(x)$ = argmin $f(x) + \sum \lambda_i^* g(x) + \sum \mu_i^* h_i(x)$ f, g:

differentiable $\nabla f(x^*) + \sum \lambda_x^* \nabla g_i(x^*) + \sum \mu_i^* \nabla h_i(\tilde{x}) = 0$

Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions for optimal
$$x^*, h^*, \mu^*$$

 $g(x^*) \leq 0$
 $h(x^*) = 0$
 $\lambda^* \geq 0$
 $\lambda_i g_i(x^*) = 0$ $i = 1, 2, -9$
 $\nabla f(x^*) + \sum \lambda_i^* \nabla g_i(x^*) + \sum \mu_i^* \nabla h_i(x^*) = 0$
Karush - Kuhn - Tucker (KKT)
conditions
Sometimes it is also sufficient for optimality

