Mathematics for AI

Lecture 4
 linear maps, matrix multiplication, matrix rank

Functions
functions / maps / tranformations
$f: X \rightarrow Y$.
$\operatorname{Domain}(f)=X$
$\operatorname{codomain}(f)=r$
$\operatorname{Rarge}(f)=\{f(x) \mid x \in X\}$
f: one-to-one (injective) $f(x)=f(y) \Rightarrow x=y$
f : onto (surjective) Range $(f)=Y$

$$
\text { जe } \quad \forall y \in Y \quad \exists x \in X: f(x)=y
$$

f: one-to-one \& onto (bijective)

Functions
f: one-to-one \& onto (bijective)

$$
\Rightarrow
$$

Inrertible siveres
bijective $\exists g$ such that $g(f(x))=x \quad \forall x \in X$

$$
\begin{gathered}
\exists g Y \rightarrow X \\
g=f^{-1}
\end{gathered}
$$

$$
f(g(y))=y \quad \forall y \in Y
$$

Functions in linear algebra

- Here, we are interested in functions from a vector space V to a vector space U

$$
(f: U \rightarrow V)
$$

Linear Transformations
A linear map $f: V \rightarrow U$

1. $f(u+v)=f(u)+f(v) \quad \forall u, v \in V$
2. $f(\alpha u)=\alpha f(u) \quad \forall u \in V, \alpha \in \mathbb{R}$ \mathbb{C}

$$
\begin{array}{cc}
1,2 \Leftrightarrow f(\alpha \underline{u}+\beta v)=\alpha f(u)+\beta f(v) & \forall u, v \in V \\
f(\alpha u)+f(\alpha v) & \forall \alpha, \beta \in \mathbb{R}
\end{array}
$$

A lineap map preserves linear combinations

Linear Transformations

$$
\begin{aligned}
& f(u+v)=f(u)+f(v) \\
& f(a u)=a f(u) \\
& \Leftrightarrow
\end{aligned}
$$

$$
f(a u+b v)=a f(u)+b f(v)
$$

does not matter if linear combination applied before or after transformation.

linear map <=> matrix representation

https://amosunov.wordpress.com/2021/06/22/linear-algebra-memes/

Dot Product as matrix product

$$
a=\underbrace{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]}_{3 \times 1} \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad a^{\top} b=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\langle a, b\rangle
$$

Inner Product

OIEDOESWOT SIWFTV

UNDERSTAND THE DOTRRBOLUET

Inner Product

$$
\begin{aligned}
& \langle u+w, v\rangle=\langle u, v\rangle+\langle w, v\rangle \\
& \left\langle\left[\begin{array}{c}
u_{1}+w, \\
u_{2}+w,
\end{array}\right],\left[\begin{array}{c}
v_{2} \\
v_{2}
\end{array}\right]\right\rangle= \\
& \langle\alpha u, v\rangle=\alpha\langle u, v\rangle \\
& \langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle \\
& \langle u, \alpha\rangle=a\langle u, v\rangle \\
& \langle u, v\rangle=f(u, v) \\
& \langle u(u+w, v)=f(u, v)+f(w, v) \\
& \langle f(\alpha u, v)=\alpha f(u, v)
\end{aligned}
$$

Inner Product

$$
\begin{aligned}
& f(x, y)=f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=x y \text {. } \\
& f\left(\alpha\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f((\alpha x))=(\alpha x)(\alpha y)=\alpha^{2} x y \\
& {\left[\begin{array}{l}
y \\
-v
\end{array}\right] \quad f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
z \\
v t
\end{array}\right]\right)=(x+z)(y+t) \neq x y+z t} \\
& f(u, v)=f\left(\left[\begin{array}{l}
u \\
v \\
v
\end{array}\right)\right)=f\left(\left[\begin{array}{c}
\alpha u \\
v
\end{array}\right]\right)=\alpha f\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right) \\
& f\left(\left[\begin{array}{c}
u+w \\
v
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)+f\left(\left[\begin{array}{l}
w \\
v
\end{array}\right]\right) \\
& f(\text { n, } y) \text { is linear in } x \text { is linear in } y\} \text { bilinear } \\
& \text { is not linear in }\binom{x}{y} \text {. }
\end{aligned}
$$

General vector spaces: Inner product space
$\mathbb{D}\left\{\begin{array}{l}\langle\alpha u, v\rangle=\alpha\langle u, v\rangle \\ \langle u+v, w\rangle=\langle u, w\rangle+\langle u v, w\rangle\end{array}\right.$
(II) $\langle u, v\rangle=\langle v, u\rangle$
(11) $\left\{\begin{array}{rl}\langle u, u\rangle\rangle 0 & u \neq 0 \\ \langle u, u\rangle=0 & u=0\end{array}\right.$

$$
\begin{aligned}
& \langle 0, u\rangle=\langle a v-v, u\rangle \\
& f(u, v) v \times v \rightarrow \mathbb{R}
\end{aligned}
$$

Matrix Multiplication in terms of inner products

Matrix multiplications in terms of matrix-vector product

Transforming a bunch of points data points as columns of a matrix

Transforming a bunch of points data points as rows of a matrix

be careful about linear transformations on row vectors!

$$
\begin{aligned}
& R\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y
\end{array}\right] \\
& \left.R\left[\begin{array}{l}
x_{1} \\
y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
y_{2}
\end{array}\right]\right]
\end{aligned}
$$

be careful about linear transformations on row vectors!

$$
\begin{aligned}
& W^{\top}\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots \\
x_{n} & y_{n}
\end{array}\right] R^{\top}=\left[\begin{array}{cc}
n_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots \\
x_{n} & y_{n}
\end{array}\right]\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& R\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \left.R\left[\begin{array}{l}
x_{1} \\
y_{4}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right]\right]
\end{aligned}
$$

Outer Product

np.outer(u,v)
u @ v.T
How many independent columns?
How many independent rows?
$\operatorname{outer}(u, v)=\operatorname{outer}(v, u) . T$
complex numbers?

Outer Product

$$
\begin{aligned}
& \text { Outer product } \\
& \text { Outer product } \\
& u=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad v=\left[\begin{array}{c}
x \\
y \\
z \\
t
\end{array}\right] \\
& a \in \mathbb{R}^{B}: \quad v \in \mathbb{R}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& W \in \mathbb{R}^{3 \times 4} \\
& W=u \otimes V
\end{aligned}
$$

Outer Product

$$
\begin{aligned}
& \text { - " }
\end{aligned}
$$

Inner product vs outer product
inner product $u^{\top} v \in \mathbb{R}$

$$
\begin{gathered}
u, v \in \mathbb{R}^{n \times 1} \\
u \cdot v=\langle u, v\rangle=u^{T} v
\end{gathered}
$$

outer product $u v^{\top} \in \mathbb{R}^{m \times n}$

$$
\begin{gathered}
u \in \mathbb{R}^{m \times 1} v \in \mathbb{R}^{n \times 1} \\
u \otimes v=u v T_{i}
\end{gathered}
$$

Two ways of looking at matrix product

Matrix Multiplication in terms of outer products

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a \\
d
\end{array}\right]\left[\begin{array}{ll}
b & y \\
z & t
\end{array}\right]=\left[\begin{array}{ll}
a x+b z & a y+b t \\
d x+e z & d y+e t
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a \dot{x} & a y \\
d x & d y
\end{array}\right]+\left[\begin{array}{ll}
b z & b t \\
e z & e t
\end{array}\right]=\left[\begin{array}{l}
a \\
d
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]+\left[\begin{array}{l}
b \\
e
\end{array}\right]\left[\begin{array}{l}
z t
\end{array}\right]} \\
& {\left[\begin{array}{l}
a \\
d
\end{array}\right] \otimes\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
b \\
e
\end{array}\right] \otimes\left[\begin{array}{l}
z \\
t
\end{array}\right]}
\end{aligned}
$$

Matrix Multiplication in terms of outer products

Block-wise multlipication

Block-wise multlipication

Column Rank

Column Rank

$$
\left[\begin{array}{lll}
1 & 4 & 3 \\
2 & 5 & 3 \\
3 & 6 & 3
\end{array}\right]
$$

Column Rank $=2$

Column Rank and Row Rank

$$
\begin{array}{ll}
{\left[\begin{array}{rr}
1 & -2 \\
2 & -4 \\
3 & -6 \\
4 & -8
\end{array}\right]} & \text { column rank }=1 \\
{\left[\begin{array}{lll}
1 & 0 & 4 \\
2 & 0 & 5 \\
3 & 0 & 6
\end{array}\right]} & \text { row rank }=1 \\
= & \text { row rank rank }=2
\end{array}
$$

Column Rank and Row Rank

$$
\begin{array}{ll}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} & \text { column rank }=3 \\
\text { row rank }=3 \\
{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} & \text { colum rank }=0 \\
\text { row rank }=0
\end{array}
$$

Column Rank and Row Rank

$\operatorname{RowRank}\left(a b^{\top}\right)=\operatorname{ColumnRank}\left(a b^{\top}\right) \leq 1$

Column Rank and Row Rank

Column Rank and Row Rank

$$
\begin{aligned}
& L=[]^{3 \times 2} \\
& 2 \times 4 \text { RRow Rank=Col RaxE } \\
& {\left[\because c_{1} c_{2}: c_{n}\right]} \\
& \text { for } i=1 \ldots n \\
& \text { if } c_{i} \notin \operatorname{span}\left(c_{1},, c_{i-1}\right) \\
& \text { L.append }\left(C_{i}\right)
\end{aligned}
$$

* Column Rank and Row Rank

$$
\begin{aligned}
& {\left[\begin{array}{llll}
c_{1} & c_{2} & c_{n}
\end{array}\right]} \\
& L=[]^{3 \times 2} \\
& \text { for } i=1 \ldots n \\
& \text { if } c_{i} \notin \operatorname{span}\left(c_{1}, c_{i-1}\right) \\
& \text { L.append }\left(c_{i}\right)
\end{aligned}
$$

Column Rank = Row Rank

Column Rank and Row Rank

"Most" matrices have full rank
$\left.3\left[\begin{array}{lll}a \\ b & d & (\\ e \\ c\end{array}\right]\left[\begin{array}{l}g \\ h \\ i\end{array}\right]\right]$
A

if A is a random 3×3 matrix (uniform distribution) non degenerate normal distribute.

$$
\operatorname{rank}(A)=3
$$

with probability =1
almost Always
thin and fat matrices

full-rank and rank-deficient

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \quad \begin{array}{l}
\operatorname{rank}(A) \leqslant \min (m, n) \\
\operatorname{rank}(A)=\min (m, n) \\
\operatorname{full}(A)<\operatorname{rank}
\end{array} \\
& A \text { is full-rank }(m, n) \\
& \text { rank-deficient } \\
& A \text { has full }
\end{aligned}
$$

full-rank and rank-deficient

$$
A \in \mathbb{R}^{m \times n}\left\{\begin{array}{cc}
\operatorname{rank}(A) \leqslant \min (m, n) \\
\operatorname{rank}(A)=\min (m, n) & \text { full-rank }(A)<\min (m, n) \\
\text { rank-deficient }
\end{array}\right.
$$

A is full-rank
A has fulli rank

$$
\begin{array}{lll}
A \in \mathbb{R}^{n \times n} & \operatorname{rank}(A)=n & \text { full-rank } \\
& \operatorname{rank}(A)<n & \operatorname{rank}-\text { deficient }
\end{array}
$$

