Mathematics for AI

Lecture 4 linear maps, matrix multiplication, matrix rank

Functions

functions / maps / tranformations $f: X \longrightarrow Y$ Pomain(f) = XCodomain (f) = Y $Range(f) = \{f(n) \mid x \in X \}$ f: one-to-one (injective) $f(n) = f(y) \implies n = y$ تل بر بل onto (surjective) Range(f) = fيوك YyEY BREX: fin)=y f: one-to-one & onto (bijective) Invertible لك به ك ولوك 50 milas

Functions

Functions in linear algebra

Here, we are interested in functions from a vector space V to a vector space U

(f: U \rightarrow V)

Linear Transformations

A linear map f: V -> V 1. f(u+v) = f(u) + f(v)# unreV 2. $f(\alpha u) = \alpha f(u)$ ∀ueV, aelR $1, 2 \iff f(\alpha u + \beta v) = \alpha f(u) + \beta f(v) + u_{1}v \in V$ $f(\alpha u) + f(\alpha v)$ $\forall \alpha, \beta \in \mathbb{R}$ A lineap map preserves linear combinations

Linear Transformations

f(u+v) = f(u) + f(v)

f(a u) = a f(u)

\Leftrightarrow

f(a u + b v) = a f(u) + b f(v)

does not matter if linear combination applied before or after transformation.

linear map <=> matrix representation

https://amosunov.wordpress.com/2021/06/22/linear-algebra-memes/

Dot Product as matrix product

Inner Product

Inner Product

. N. Toosi

Inner Product

General vector spaces: Inner product space

K. N. Toosi University of Technology

 $\langle \alpha_{1}, \nu \rangle = \alpha \langle \alpha_{1} \nu \rangle$ $\langle \alpha_{1} \nu, \nu \rangle = \langle \alpha_{2} \nu \rangle + \langle \alpha_{2} \nu \rangle$ (U,V) = (V, U) u = 0 (1,1) >0 U=1 < ugu> = 0 $\langle 0, u \rangle = \langle \alpha v - v, u \rangle$ -> IR

Matrix Multiplication in terms of inner products

K. N. Toosi

Matrix multiplications in terms of matrix-vector product

Transforming a bunch of points data points as columns of a matrix

Transforming a bunch of points data points as rows of a matrix

be careful about linear transformations on row vectors!

 $R\begin{bmatrix} n\\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} n\\ y \end{bmatrix}$ $R \begin{bmatrix} 2 \alpha_1 \begin{pmatrix} n_1 \\ q_1 \end{pmatrix} \begin{bmatrix} n_2 \\ q_2 \end{bmatrix} \begin{bmatrix} n_3 \\ q_3 \end{pmatrix} \end{bmatrix}$

be careful about linear transformations on row vectors!

 $R[y] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix}$ $R \begin{bmatrix} 2 \alpha_1 \begin{pmatrix} n_1 \\ q_1 \end{pmatrix} \begin{bmatrix} n_2 \\ q_2 \end{bmatrix} \begin{bmatrix} n_3 \\ q_3 \end{pmatrix} \begin{bmatrix} n_3 \\ q_3 \end{bmatrix}$

Outer Product

np.outer(u,v)

u @ v.T

How many independent columns?

How many independent rows?

outer(u,v) = outer(v,u).T

complex numbers?

Outer Product

Outer Product

Inner product vs outer product

Two ways of looking at matrix product

4VIII r,T Cn P GT = it VmT = < r., 4) r,T r2T -Cn Cz C . . .

 r_n^T

Matrix Multiplication in terms of outer products

Block-wise multlipication

NX m1+m2=m mi mz P. m, KPI MixP2 m2xP2 M2XPI m maxp

Block-wise multlipication

M, XNI $\begin{bmatrix} n_1 \\ B_1 \\ B_2 \end{bmatrix}$ $\begin{bmatrix} n_2 \\ B_3 \\ B_4 \end{bmatrix}$ A2) Å, A₄ A3 $A_{3}B_{1} + A_{4}B_{3}$ $A_{3}B_{2} + A_{4}B_{4}$

Column Rank

Column Rank 3 7 45 Column Rank = 2 2= dim (column space)

$$\begin{bmatrix} 1 & -2 \\ 2 & -4 \\ 3 & -6 \\ 4 & -8 \end{bmatrix}$$

$$\begin{bmatrix} column \ rank = 1 \\ row \ rank = 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 4 \\ 2 & 0 & 5 \\ 3 & 0 & 6 \end{bmatrix}$$

$$\begin{bmatrix} column \ rank = 2 \\ row \ rank = 2 \end{bmatrix}$$

RowRank(a b^{T}) = ColumnRank(a b^{T}) ≤ 1

column rank = dim (column space)
$$\leq n$$

row rank = dim (row space) $\leq m$
 $\leq n$
column rank $\leq \min(m, n)$
row rank $\leq \min(m, n)$

 $\begin{bmatrix} 1 & 2 & 3 & (0) \\ 2 & 3 & 5 & 1 \\ 3 & 4 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ Factorization 2×4 EROW Rank=Col RoxE L=[] 3×2 for $i = 1 \cdots n$ span (L C, C₂-; C_n if Cit span (C1, , Ci-1) L. append (Ci)

 $\begin{bmatrix} 1 & 2 & 3 & (0) \\ 2 & 3 & 5 & 1 \\ 3 & 4 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix} Factorization$ $L = \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix} Factorization$ $L = \begin{bmatrix} 3 & x^2 & 2x^4 \\ For x = 1 & n \\ if C_i \notin span(C_1, C_{i-1}) \end{bmatrix}$ C_{2} C_{2} C_{n} L. append (Ci)

Column Rank = Row Rank

"Most" matrices have full rank

thin and fat matrices

full-rank and rank-deficient

full-rank and rank-deficient

