Mathematics for AI

Lecture 7
 Homogeneous Equations, Vector Norm, Orthogonality, Orthogonal Projection

Homogeneous Equations

$$
\begin{aligned}
& 2 x+3 y=z=0 \\
& x-2 y+4 z=0 \\
& {\left[\begin{array}{rrr}
2 & 3 & -1 \\
1 & -2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & -2 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{c}
2 \alpha \\
-\alpha \\
\alpha
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
2
\end{array}\right] \text {. }} \\
& \text { In (2) we see } \\
& \text { In } \text { Ieqref\{eq: linear\} } \\
& A \vec{x}=0 \\
& A(\alpha \vec{x})=\alpha A \vec{x}=\alpha \overrightarrow{0}=\overrightarrow{0} \\
& \vec{x} \alpha \vec{x} \\
& \text { Onotblas } \\
& \text { Homogeneous Equations }
\end{aligned}
$$

Vector lenght

$$
\begin{array}{ll}
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad & \|\vec{x}\| \\
\left\|\overrightarrow{x^{2}}\right\|^{2} & =\sqrt{x_{1}^{2}+x_{2}^{2}+x_{2}^{2}+x_{3}^{2}}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\vec{x} \cdot \vec{x} \\
& \langle\vec{x}, \vec{x}\rangle=x^{\top} x
\end{array}
$$

$$
\|\overrightarrow{0}\|=0
$$

Vector norm and normed vector spaces

Nonnegative: $\| x| |>=0$
Positive definite $\|x\|=0 \Leftrightarrow x=0$
Absolute homogeneity: $\|a \times\|=|a|\|\times\|$
Triangle inequality: $|\mid x+y\|<=\| x\|+\| y \|$
https://en.wikipedia.org/wiki/Normed vector space

Example

$$
\begin{aligned}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right] & \|x\|_{2}=\sqrt{\langle x, x\rangle} \rightarrow L_{2} \text {-norm } \\
& \|x\|_{1}=\sqrt{L_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\left\lvert\, \begin{array}{l}
\text {-norm }
\end{array}\right. \\
& \|x\|_{p}=\sqrt{\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left.\left|x_{n}\right|^{p}\right|^{p}+\left|x_{1}^{p}+\cdots+\left|x_{n}\right|^{p}\right.} \quad L_{p-n o r m}^{L \infty-n o r m}\|x\|_{\infty}=\max _{i}\left|x_{1}\right|
\end{aligned}
$$

Orthogonality

$$
\begin{align*}
& \text { lenght } x=\sqrt{x \cdot x}=\sqrt{x^{\top} x} \tag{II}\\
& x, y \in \mathcal{V} \\
& \overbrace{x}^{x+y} \int_{y}^{\pi} \\
& x \perp y \Rightarrow \\
& \|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} \Rightarrow \\
& \langle x+y, x+y\rangle=\langle x, x\rangle+\langle y, y\rangle \Rightarrow \\
& \langle x, x+y\rangle+\langle y, x+y\rangle=\langle x, x\rangle+\langle y, y\rangle \Rightarrow \\
& \langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle=\langle x, x\rangle+\langle y, y\rangle \Rightarrow \\
& 2\langle x, y\rangle=0 \Rightarrow\langle x, y\rangle=0 \\
& \vec{x} \perp \vec{y} \Leftrightarrow\langle x, y\rangle=0 \\
& x, y \in \mathbb{R}^{n} \Rightarrow x+y \Rightarrow x^{\top} y=0=\langle x, y\rangle=x \cdot y
\end{align*}
$$

Orthogonal Projection - 1D case

Matrix multlipicaltion of a vector and a scalar
$T_{\alpha} \vec{V}>$ rector

$$
\alpha \in \mathbb{R} \quad V \in \mathbb{R}^{n}
$$

compatible with

$$
\alpha=u^{\top} v \in \mathbb{R}
$$ matrix multiplication

$$
\left(u^{\top} v\right) V \neq u^{\top} V^{\top} V^{c a} v
$$

$=V\left(u^{\top} v\right)=\underbrace{v_{n}}_{\underbrace{v_{n \times 1}}_{n \times 1} v_{n \times 1}^{\top} V_{n \times 1}^{v_{n \times 1}}}$

$$
\begin{aligned}
& \alpha V=\left(u^{\top} v\right) v=v(u T v)=\left(v u^{\top}\right) v \\
& =v\left(v^{\top} u\right)=v^{\top} u \\
& =\underbrace{\left(v v^{\top}\right)}_{\substack{\text { Rank } \\
\text { Rank=1 }}} u
\end{aligned}
$$

The projection matrix

Properties of the projection matrix

$$
\begin{aligned}
& \left.\left.\xrightarrow[b]{ } \quad P_{a}=\frac{a a^{\top}}{a^{\top} a}=\frac{a a^{\top}}{\|a\|^{2}}=\left(\frac{a}{\|a\|}\right)^{\left(\frac{a}{a}\right.}\right)^{\top}\right)^{\top} \\
& \bar{a}=\frac{a}{\|a\|}=\frac{a}{\sqrt{a^{+} a}} \quad \begin{array}{c}
\|\bar{a}\|=1 \\
\downarrow
\end{array} \quad P_{a}=\bar{a}^{\text {is a unit }} \bar{a}^{\top}
\end{aligned}
$$

Properties of the Projection Matrix

$$
\begin{aligned}
f_{a}(b) & =f_{a}\left(f_{a}(b)\right) \quad \text { idempotent } \\
P_{a} & =P_{a} P_{a}
\end{aligned}
$$

$$
\text { projection matrix }\left\{\begin{array}{l}
P P=P \\
P^{T}=P
\end{array}\right.
$$

Rank of the 1-D projection matrix

$$
\begin{aligned}
& C\left(P_{a}\right)=C\left(\frac{a^{\top} a^{\top}}{\|a\|^{2}}\right)=C(a)=\{\alpha \vec{a} \mid \alpha \in R\} \\
& \xrightarrow[\longrightarrow]{a} \frac{a a^{T}}{\|a\|^{2}}=\frac{\int N R X[a]\left[a_{1} a_{2} \cdots a_{n}\right]}{\|a\|^{2}} \\
& {\left[\begin{array}{llll}
\frac{a_{1}}{\| a u^{2}} a & a & \frac{a_{2}}{\| a a^{2}} & \cdots a \|^{2}
\end{array}\right]} \\
& \operatorname{Rank}(p)=1=\operatorname{dim}(S)
\end{aligned}
$$

Length of the projected vector

General Projection into a linear subspace

S: a linear subspace
$u_{1}, u_{2}, \ldots, u_{m}$ form a basis for S
$x_{p} \perp x-x_{p}$
C) Solver

$$
x-x p \perp y \quad y \in S
$$

$x-x p \perp u_{i} \quad i=1 \ldots m$

$$
\begin{aligned}
& x_{p} \in \operatorname{span}\left(u_{1}-u_{m}\right) \Rightarrow x_{p}=a_{1} \vec{u}_{1}+a_{2} \overrightarrow{u_{2}}+\cdots+a_{m} \vec{u}_{m}=\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}}-\overrightarrow{u_{m}}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{m}
\end{array}\right]
\end{aligned}
$$

General Projection into a linear subspace

$$
\begin{aligned}
& \left(x-x_{p}\right)^{\top} u_{i}=0 \Rightarrow u_{i}^{\top} x=u_{i}^{\top} x p \\
& x_{p}=U \vec{a} \Rightarrow U^{\top} \overrightarrow{x_{p}}=U_{\downarrow}^{\top} U_{\downarrow} \vec{a} \\
& U^{\top} x_{p}=\left[\begin{array}{c}
u_{1}^{\top} \\
u_{2}{ }^{\top} \\
\vdots \\
u_{m}^{\top}
\end{array}\right] x_{p}=\left[\begin{array}{l}
u_{1}^{\top} x_{p} \\
u_{2}^{\top} \times p \\
u_{m}^{\top} x_{p}
\end{array}\right] \stackrel{m \times n}{m \times m \times m}\left[\begin{array}{l}
u_{1}^{\top} x \\
u_{2}^{\top} x \\
u_{m}^{\top} x
\end{array}\right]=V^{\top} x \\
& \Rightarrow U^{\top} x=U^{\top} U a \\
& U^{\top} U \text { non-singular } \\
& a=\left(U^{\top} U\right)^{-1} U^{\top} x \\
& U^{\top} U y=0 \Rightarrow y=0 \\
& \begin{array}{l}
x_{p}=U \vec{a}=U\left(U^{\top} U\right)^{-1} U^{\top} x \quad \text { projection matrix } \quad p=p=p
\end{array}
\end{aligned}
$$

