Mathematics for AI

Lecture 8
 Orthonormal Basis, QR decomposition, least squares solution

Remember: Orthogonal Projection

$$
\begin{aligned}
& x_{p}=\left[\begin{array}{lll}
a_{1} & a_{2} \cdots u_{n} & \\
1 & & \\
& & \\
l_{n}
\end{array}\right] \\
& X_{p}=U \vec{a} \\
& \vec{a}=\left(U^{\top}\right)^{-1} U^{\top} x
\end{aligned}
$$

Orthonormal Basis

The basis vectors $u_{1}, u_{2} \ldots u_{n}$ are unit vectors \& perpendicular to each other

$$
\begin{aligned}
& \text { th perpendicular to each other } \\
& \left\|u_{i}\right\|=1 \quad \Longrightarrow u_{i}^{\top} u_{j}=\left\langle u_{i}, u_{j}\right\rangle= \begin{cases}1 & i=j \\
\left\langle u_{i}, u_{j}\right\rangle=0 & \text { if }\end{cases}
\end{aligned}
$$

$\Rightarrow u_{1}, u_{2}, \ldots, u_{n}$ are orthonormal vectors.

$$
\begin{array}{rlrl}
m\left[\begin{array}{rl}
u_{1}, u_{2}, \ldots, u_{n} \\
u_{1} u_{2} \ldots u_{n} \\
&
\end{array}\right] & =U & U^{\top} U & =\left[\begin{array}{ll}
& u_{1}^{\top} \\
u_{2}^{\top} \\
u_{n}^{\top}
\end{array}\right]\left[u_{1} u_{2} \cdot u_{n}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \begin{array}{ll}
\left.U^{\top} U\right)_{i j} & =u_{1}^{\top} \cdot u_{j}
\end{array} & U^{\top} U=I
\end{array}
$$

Orthonormal Basis

Matrix with orthonormal columns
if $U \in R^{m \times n}$ has orthonormal columns $U^{T} U=I$
(I) $<m \quad U U^{\top} \neq I \quad[U]^{\operatorname{rank}(U)}$

Orthogonal Matrix
(II) $m=n$

$$
\begin{array}{ll}
U \text { square }(n \times n) & U^{\top} U=I \\
\operatorname{rank}(U)=n & U^{\top}=U^{-1} \\
U U^{\top}=I
\end{array}
$$

If $\Phi \cup$ is square and its columns are orthonormal then its rows are also orthonormal.

$$
\left.\begin{array}{l}
U^{\top} U=I=U U^{\top} \\
U \in \mathbb{R}^{n \times n} \text { (square) }
\end{array}\right\} \text { orthogonal matrix }
$$

Gram-Scmit Orthogonalization

$a_{1}, a_{2} \ldots a_{n} \in \mathbb{R}^{n}$ for a bnsis for \mathbb{R}^{n}

$$
\begin{aligned}
u_{1} & =\frac{a_{1}}{\left\|a_{1}\right\|} \\
u_{2} & =\frac{a_{2}}{}-u_{1} u_{1}^{\top} a_{2}=\left(I-u_{1} u_{1}^{\top}\right) a_{2} \text { Gram-Scmit } \\
u_{2} & =\frac{u_{2}}{\left\|u_{2}\right\|} \\
\tilde{u}_{3} & =a_{3}-\left[\begin{array}{l}
\left.u_{1} u_{2}\right]\left[\begin{array}{l}
u_{1}^{\top} \\
u_{2}+
\end{array}\right] a_{3} \\
\\
\\
=a_{3}-u_{1} u_{1}^{\top} a_{3}-u_{2} u_{2}^{\top} a_{3}
\end{array} \quad\right. \text { orthononaliza }
\end{aligned}
$$

QR decomposition

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
\vec{a}_{1} & \overrightarrow{a_{2}} \cdots \vec{a}_{n}
\end{array}\right]} & {\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array} \cdots u_{n}\right.}
\end{array}\right]\left[\begin{array}{cc}
\alpha & \beta \\
0 & \gamma \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

$n \times n$
square orthogonal upper triangular QR decomposition $2 \underset{\substack{b \\ \text { lower }}}{L}, R Q, L 2$ np. linalg

Underdetermined system

$$
[A][x]=\left[\begin{array}{l}
b \\
m \times n
\end{array} \quad \begin{array}{r}
r=\operatorname{Rank}(A)<n \\
b \in C(A)
\end{array} \Rightarrow\right.
$$

$$
A \in \mathbb{R}^{m \times n}
$$

r inindependen equations n unknown
Underdeterminaed Equations

Overdetermined system

$b \notin C(A)$
$A \in \mathbb{R}^{m \times n}$
Overdetermine

Overdetermined system

$$
\begin{aligned}
& {[A][x]=[b] \quad \begin{array}{l}
\text { more equations than ankkoun } \\
\text { over-determined }
\end{array}} \\
& A=\left[a a^{m} a_{2},-a_{n}\right]
\end{aligned}
$$

Linear measurements

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
& y_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
& y_{3}=a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{aligned}
$$

measurement

Noisy linear measurements

$$
\begin{aligned}
& \begin{array}{l}
y_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+n_{1}-x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
y_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{2} x_{2}+n_{2}
\end{array} \text { meassument) noise } \\
& y_{3}=a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+n_{3} \quad y=A x+h^{\text {noise }} \\
& g_{4}=a_{41} x_{1}+a_{42} x_{2}+a_{4} x_{3}+n_{4} \quad n \in \mathbb{R}^{m} \\
& y_{5}= \\
& y_{6}= \\
& {[y][A][x] \cdot+[n] \cdot \begin{array}{l}
\text { noise is } \\
\frac{\text { unknorn }}{\text { noise is }} \\
\text { (relatively) small }
\end{array}} \\
& \begin{array}{ll}
y \notin C(A) \\
y-n \in C(A) \quad & \widehat{A x=y} \rightarrow \text { overdetermind } \\
A \in \mathbb{R}^{m \times n}
\end{array}
\end{aligned}
$$

What is the best solution?

$$
\begin{array}{ll}
y \notin C(A) & A x=y \rightarrow \text { overdetermined } \\
y-n \in C(A) & A \in \mathbb{R}^{m \times n}
\end{array}
$$

there is no x such that $A \underline{x}=y$ find an x such that $\|A x-y\|$ is small

$$
\|u\|=\text { lenght of } u_{0} \quad A x-y \in \mathbb{R}^{m}
$$

$$
\begin{aligned}
& f(x)=\|A x-y\| \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& x^{*}=\underset{x}{\operatorname{argmin}} f(x)
\end{aligned}
$$

What is the best solution?

$$
A x=y-n \quad n=y-A x
$$

$y \notin A \quad A x=y$ has no solution find x such that $\|A x-y\|$ is :snell.

$$
x=\arg \min _{x}\|A x-y\| \|_{x} \sum_{6=\underset{x}{\operatorname{argmin}} f(x)}^{\int}
$$

What is the best solution?

$$
\begin{aligned}
& {[y]=[A][x]+[n]} \\
& x^{*}=\operatorname{argmin}
\end{aligned}\|A x-y\| .
$$

$A x=y$ overdetermined

Least Squares

$$
\begin{aligned}
& x=\arg \min _{x}\|A x-y\| \\
& A x=\left[a_{1} a_{2} \cdots a_{n}\right]\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{n}
\end{array}\right]
\end{aligned}
$$

best x is when $A x$ besoms the projection of y into $C(A) \Rightarrow \begin{aligned} & \left\{x-A x \perp a_{1}\right. \\ & y-A x \perp 1 a_{2} \\ & y=A x \perp a_{n}\end{aligned}$

$$
\begin{aligned}
& y_{p}=A x=A\left(A^{\top} A\right)^{-1} A^{\top} y=r \\
& x=\left(A^{\top} A\right)^{-1} A^{\top} y=\underset{x}{a}=\operatorname{argmin}\|A x-y\|
\end{aligned}
$$

Least Squares

$$
\begin{aligned}
& y_{p}=A x=A\left(A^{\top} A\right)^{-1} A^{\top} y=\left(A^{\top} A\right)^{-1} A^{\top} y=\underset{x}{a}=\underset{x}{\operatorname{argmin}}\|A x-y\| \\
& A x \cong y \quad x=\left(A^{\top} A\right)^{-1} A^{\top} y
\end{aligned}
$$

$a b$ least squares solution $\underset{x}{\operatorname{argmin}}\|A x-y\|=\underset{x}{\operatorname{argmin}}\|A x-y\|^{2}$

$$
\begin{aligned}
& \underset{x}{\operatorname{argmin}}\|A x-y\|==\operatorname{argmin}\|A x-y\|^{2} \\
& l=A x-y=\left[\begin{array}{l}
r_{1}^{\top} \\
r_{2}^{\top} \\
r_{1}^{\top} \\
r_{m}^{\top}
\end{array}\right] x-\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
r_{1}^{\top} x \\
r_{2}^{\top} x \\
r_{m}^{\top} x
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
y_{2} \\
1 \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
r_{1}^{\top} x-y_{1} \\
r_{2}^{\top} x-y_{2} \\
\vdots \\
r_{m}^{\top} x-y_{m}
\end{array}\right] \\
& \text { residual vector }
\end{aligned}
$$

$$
\|\rho\|^{2}=\left\|\left[\begin{array}{l}
\text { residual } \\
p_{2} \\
\rho_{m}
\end{array}\right]\right\|^{2}=\sum_{i=1}^{m} \rho_{i}^{2}=\sum_{i=1}^{m}\left(r_{i}^{\top} x-y_{i}\right)^{2}
$$

Least Squares Solution

Geometric Interpretation

Least Squares

I x^{*} Lest Squares Solution

$$
\begin{gathered}
A x=b \quad b \notin C(A) \\
\min _{x}\|A x-b\|=\operatorname{dist}(b, C(A))= \\
b \in C(A) \Rightarrow \min _{x}\|A x-b\|=0
\end{gathered} \Rightarrow
$$

$$
\Rightarrow\left(b-A x^{*}\right) \perp A x^{*}
$$

$$
\left(b-A x^{*}\right) \perp A x
$$

Orthogonal vectors

$$
\Rightarrow\|u\|^{2}+\|v\|^{2}=\|u+v\|^{2}
$$

$$
u^{\top} u+v^{\top} v=(u+v)^{\top}(u+v)
$$

$$
=\left(u^{\top}+v^{\top}\right)(u+v)
$$

$$
=u^{\top} u+\frac{u^{\top} v+v^{\top} u}{2 u^{\top} v}+v^{\top} v \in \mathbb{R}
$$

$$
\begin{aligned}
& \Rightarrow u \perp v \Leftrightarrow u^{\top} u+v^{\top} v=u^{\top} \mu^{2 u^{\top} v}+2 u^{\top} v+y^{v} v \\
& \Rightarrow 2 u^{\top} v=0 \Rightarrow u^{\top} v=0=\langle u, v\rangle \\
& u \perp v \Leftrightarrow\langle u, v\rangle=0
\end{aligned}
$$

