Mathematics for AI

Lecture 9
Determinant, Intro to Eigenvalues and Eigenvectors

Rank of product of matrices

$$C(AB) \subseteq C(A)$$

$$x \in I \Rightarrow \Rightarrow x \in J$$

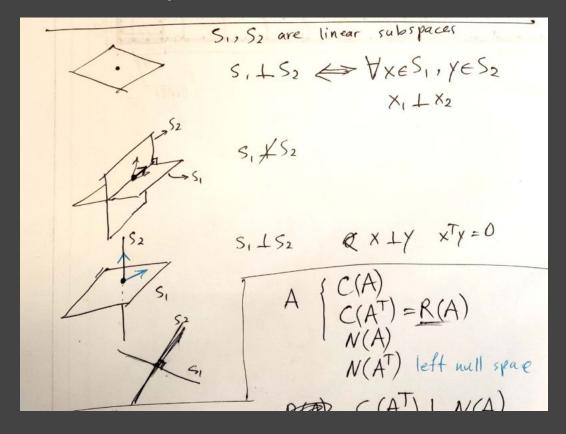
$$x \in C(AB) \Rightarrow x = (AB)Z \Rightarrow x = A(BZ) \Rightarrow AX \Rightarrow x \in C(A)$$

$$C(ABCDE) \subseteq C(A)$$

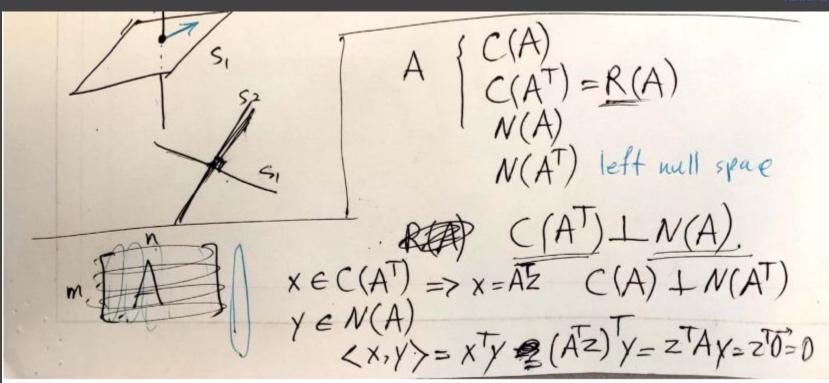
$$Rank(AB) \leq Rank(A)$$

$$Rank(AA_2 - A_n) \leq min(AA_2 -$$

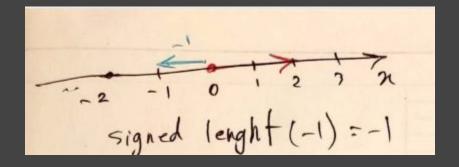
Orthogonal subspaces



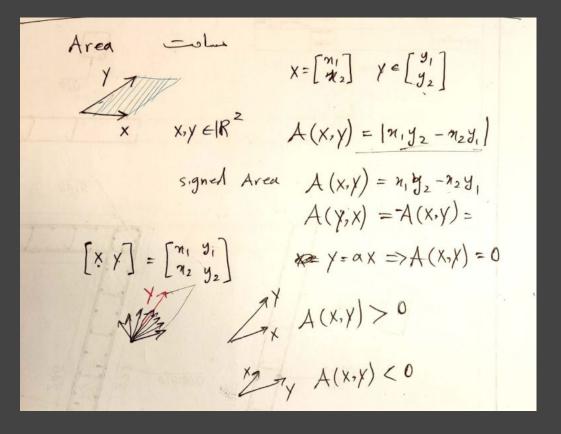
Row Space and Null space



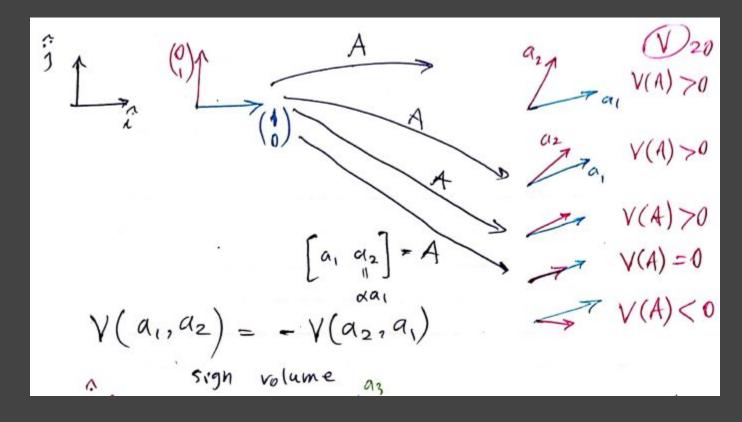
Signed Length



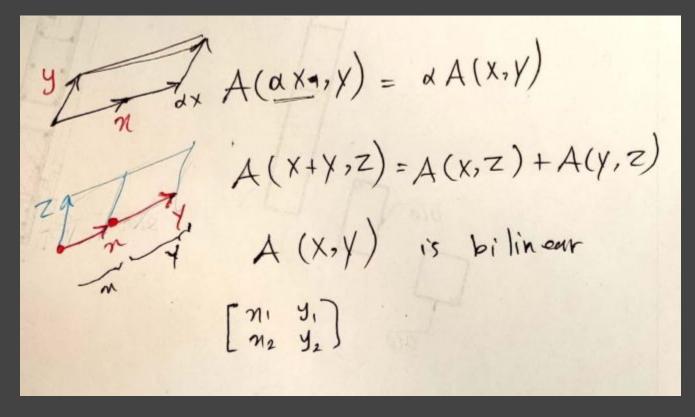
Signed Area



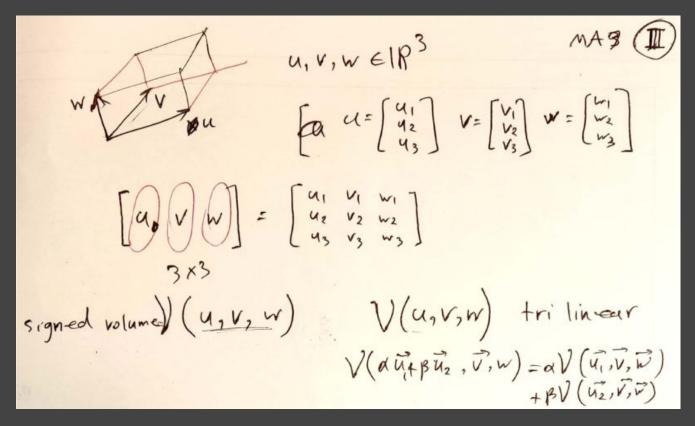
Signed Area



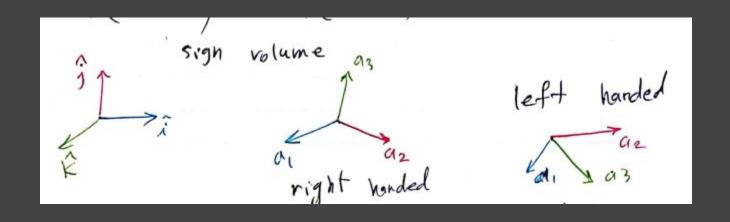
Bilinearity of Signed Area



Signed Volume



Signed Volume



Trilinearlity of signed volume

signed volume)
$$(u_1v_2w)$$
 $V(u_1v_2w)$ tri linear $V(\alpha \vec{u}_1 \beta \vec{u}_2, \vec{v}, w) = \alpha V(\vec{u}_1, \vec{v}, \vec{w}) + \beta V(\vec{u}_2, \vec{v}, \vec{v})$

Determinant

$$V(a_1,a_2,a_n) = det(A)$$

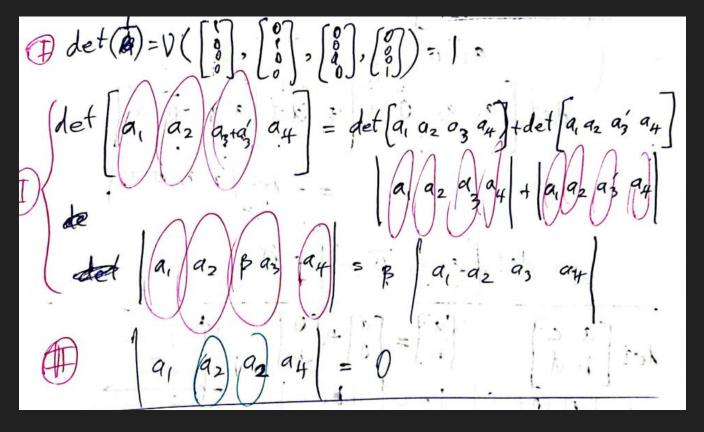
 $V(A) = det(A) = determinant = A$

Determinant

$$u_1, u_2 \dots u_n \in \mathbb{R}^n$$

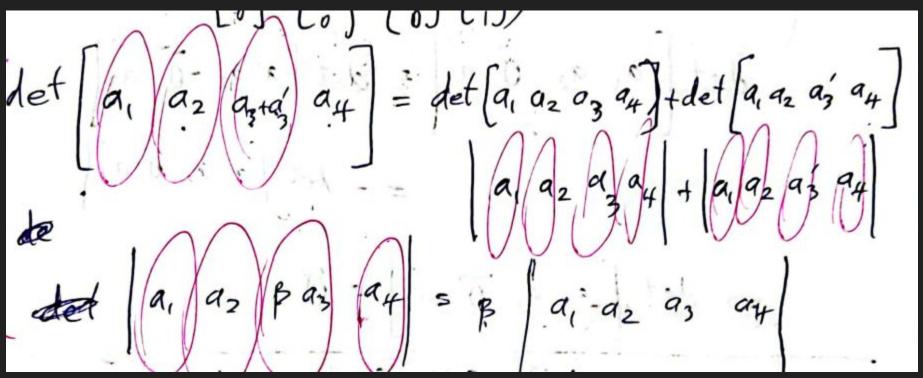
 $signed hyper-volume$ $V(u_1, u_2, \dots, u_n)$
 $[u_1, u_2 \dots u_n] \in \mathbb{R}^n \times n$
 $A = [\vec{a}_1 \vec{a}_2 \dots \vec{a}_n] \in \mathbb{R}^n \times n$
 $a_1 \in \mathbb{R}^n$
 $det(A) = V(\vec{a}_1 \vec{a}_2 \dots \vec{a}_n)$

Three basic properties

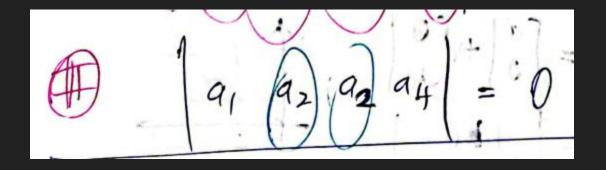


1. Determinant of Identity Matrix

2. Multilinear (Linear in each column)



3. Identical Columns



Swapping Columns

$$\begin{vmatrix} a_1 & a_2 & a_3 & a_4 \end{vmatrix} = \begin{vmatrix} a_1 & a_3 & a_2 & a_4 \end{vmatrix}$$
Scanned with CamScanner

Permutation matrix

	- A-	
P is a	permutation matrix	det (P) ∈ {+1, 1}
	1	
1000	0 (00)	deven permu P =1
0 1 0 0	P3 1 0 0 0	odd perm. IPI=-
L00,04		

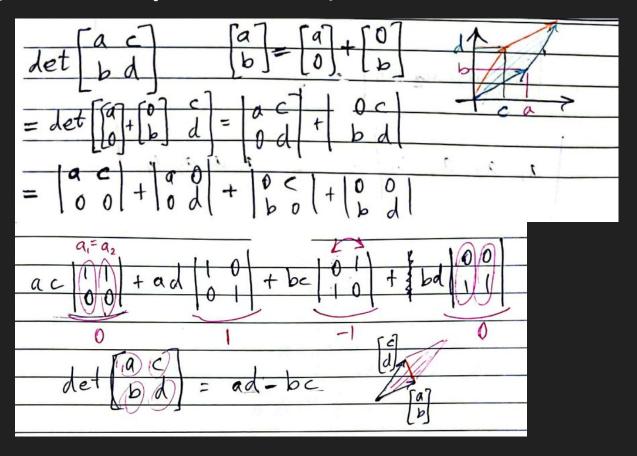
one zero column

$$det \left[a_1 \ a_2 \ \vec{0} \ a_3 \right] = det \left[a_1 \ a_2 \ \vec{0} \ a_3 \right]$$

$$= -det \left[a_1 \ a_2 \ \vec{0} \ a_3 \right]$$

$$\Rightarrow det \left[a_1 \ a_2 \ \vec{0} \ -a_3 \right] = \emptyset$$

Determinant of a 2x2 matrix



Diagonal Matrix

Diagonal Matr	rix	di o	0 0		9	0	0	
		0 0	2 d2 0	= d1 0	0	dz	0	
3		00	5 d4	0	0	0	dy	
	.(0	00						
= d1 d2 d3 d4	0 (00	$=d_1d$	2 d3 d	4			
1 1	00	(N)						
4	00	01						

Scaling a matrix

A =
$$\mathbb{R}^{n \times n}$$
 $\alpha \in \mathbb{R}$ $A = [a_1 a_2 \cdots a_n]$
 $det(\alpha A) = det([\alpha a_1 a_2 \cdots \alpha a_n])$
 $= \alpha^n det(A)$
 $S_2 = 4S_1$
 $V_2 = 8V_1$

Singular matrices

$$|a_1 a_2 \alpha_{a_1+\beta} a_2| = \alpha |a_1 a_2 |a_1| + \beta |a_1 a_2 |a_2| = 0$$

Singular matrices

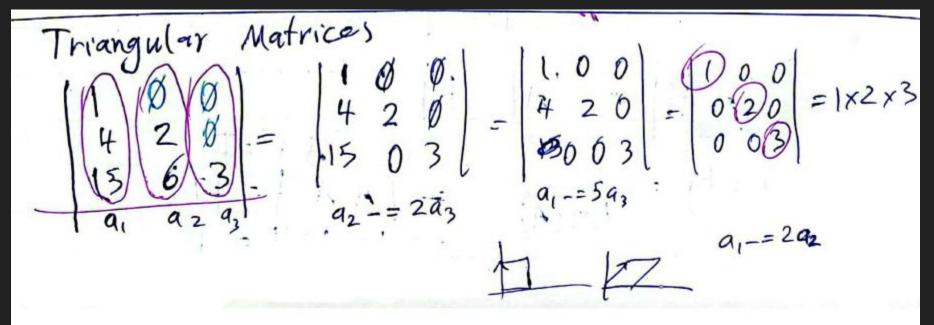
One column is a	linear combination of others (some of)
a, a2, an-1 an	^ ✓
	$a_n = \sum_{i=1}^{n-1} \beta_i a_i$
9, 92 9, 1 \\ \(\frac{n-1}{\sum_{n=1}} \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$\frac{n-i}{\sum_{i=1}^{n-i} \beta_i} a_i, a_2 - a_{n-i}, a_i = 0$

Singular Matrices

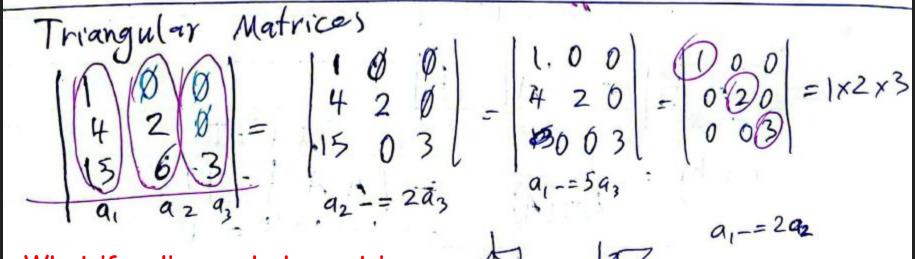
Determinant of a singular matrix is zero.

(is the converse true?)

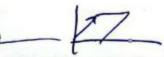
Triangular Matrices



Triangular Matrices



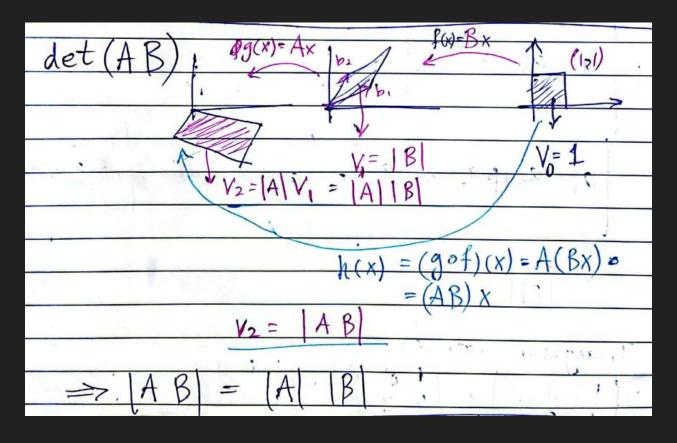
What if a diagonal element is zero.



Triangular Matrices

Ais (Upper or	Lower Triangular Matrix
-	
	A = product of digdiagonal
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	elements
	= dii
	N = 1

Product of matrices



Product of matrices

$$det(A B) = det(A) det(B)$$

try proving using the previous properties.

Inverse

$$det(A^{-1}) = \frac{1}{det(A)} \Rightarrow |A|A^{-1} = |I|$$

$$\Rightarrow |A||A^{-1}| = |I|$$

Determinant of a non-singular matrix

Determinant of a non-singular matrix

$$det(A)$$
 $det(A^{-1}) = 1 \Rightarrow determinant of a$
 $non-singular matrix is$
 $non-zero.$

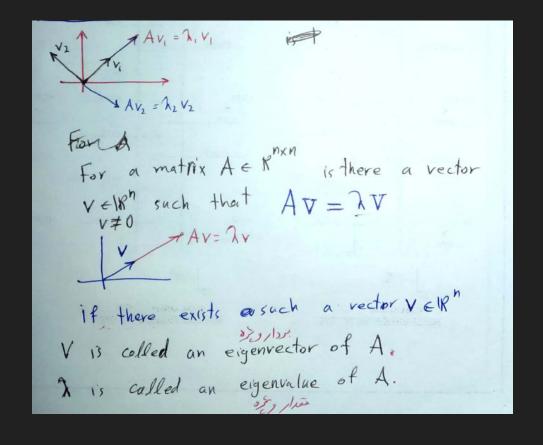
 \Rightarrow det(A) = 0 if and only if A is singular.

Transpose of a matrix

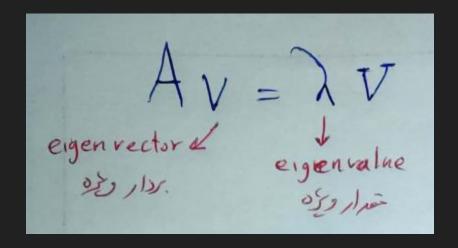
$$det(A^{T}) = det(A)$$

All the determinant properties about the columns of a matrix applies to the rows of a matrix.

Eigenvalues and Eigenvectors



Eigenvalues and Eigenvectors



Example: Diagonal Matrices

A=
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
eigenvectors are $i=\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\{j=\begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$

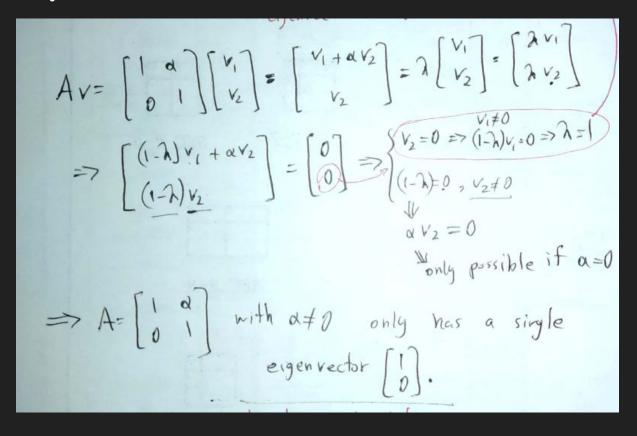
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
eigenvector

Eigenvalues are homogeneous

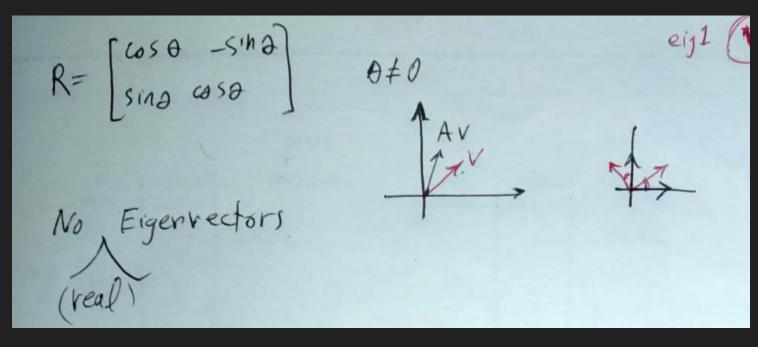
$$Av = \lambda v \Rightarrow A(2v) = \lambda(2v)$$
 for eigenvectors the $A(\alpha v) = \lambda(\alpha v)$ orientation matters (not length)

Example



Example: Identity matrix

Example: 2D rotation



Example: 3D Rotation

Singular matrices

Let
$$A \in \mathbb{R}^{n \times n}$$
 be singular. $\Rightarrow \text{Dim}(N(A)) > 0$
 $\exists v \in N(A) \ v \neq 0$ $A \vec{V} = \vec{0} = 0.\vec{V}$
Any $v \neq 0$ in $N(A)$ is an eigenvector of A
with the gresponding eigenvalue $\lambda = 0$.

Projection matrix

Computing Eigenvalues

$$A \in \mathbb{R}^{n \times n}$$

$$Av = \lambda v \qquad v \in \mathbb{R}^{n}, \ \lambda \in \mathbb{R}$$

$$Av = \lambda v \Rightarrow Av - \lambda v = 0 \Rightarrow Av = (\lambda T)v = 0$$

$$\Rightarrow (A - \lambda T)v = 0 \Rightarrow (A - \lambda T -) \text{ is singular}$$

$$v \neq 0$$

$$\det (A - \lambda T) = 0 \Rightarrow \text{a polynomial on } \lambda \text{ of degree } n$$

$$v \Rightarrow v \text{ of } \lambda = 0$$

Computing Eigenvalues

$$AV = \lambda V \Rightarrow AV = (\lambda I)V \Rightarrow AV - \lambda IV = 0$$

$$(A - \lambda I)V = 0 \Rightarrow (A - \lambda I) \text{ has a non-zero pull vector}$$

$$(A - \lambda I)V = 0 \Rightarrow (A - \lambda I) \text{ has a non-zero pull vector}$$

$$A - \begin{bmatrix} \lambda 00 \\ 0 \lambda 0 \\ 0 0 \lambda \end{bmatrix})V = \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{bmatrix} \forall = 0$$

$$(A - \begin{bmatrix} \lambda 00 \\ 0 \lambda 0 \\ 0 0 \lambda \end{bmatrix})V = \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{bmatrix} \forall = 0$$

Example

$$A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \Rightarrow A - \lambda I = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} \lambda & 3 \\ 3 & \lambda \end{bmatrix}$$

$$det \begin{bmatrix} \lambda & 3 \\ 3 & \lambda \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} \lambda^2 - 3^2 = 0 \\ 0 & \lambda^2 - 3^2 = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \lambda - 3 \\ 0 & \lambda \end{bmatrix} \Rightarrow v_1 = v_2$$

$$\lambda = 3 \Rightarrow \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 3 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & v_2 \\ 3 & v_1 \end{bmatrix} = \begin{bmatrix} 3v_1 \\ 3v_2 \end{bmatrix} \Rightarrow v_1 = v_2$$

$$V = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda = -3 \Rightarrow \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = -3 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & v_2 \\ 3 & v_1 \end{bmatrix} = \begin{bmatrix} -3v_1 \\ -3v_2 \end{bmatrix} \Rightarrow 7v_1 = -v_2$$

$$V = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, 3, \quad (\begin{bmatrix} -1 \\ 1 \end{bmatrix}, -3)$$

$$Choose eigenvector to be unit vectors$$

$$\begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}, 3, \quad (\begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}, 3, \quad (\begin{bmatrix} -\sqrt{2}/2$$

Example

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix} \qquad A - \lambda F = \begin{bmatrix} 2 - \lambda & 3 \\ 3 & 2 - \lambda \end{bmatrix}$$

$$(2 - \lambda)^2 - 3^2 = 0 \Rightarrow 2 - \lambda = \pm 3 \Rightarrow \begin{cases} \lambda = -1 \\ \lambda = 45 \end{cases}$$

$$\text{chareteristic polynomial of } A$$

$$\lambda = 1 \Rightarrow A - \lambda F \Rightarrow \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} v = 0 \Rightarrow v = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda = 5 \Rightarrow A - \lambda F = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} v = 0 \Rightarrow v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$