Mathematics for AI Homework 2 Mathematics for AI Fall 2024 Behrooz Nasihatkon

Read these first:

- i To achieve the full score, you need to write your solutions using $L^{A}T_{E}X$. If you choose to write your solutions on paper or in a word processing software (e.g., MS Word, LibreOffice), you can receive up to 90% of the score.
- ii If writing on paper, you must use a scanner or a camera scanning app (e.g., CamScanner) to scan the document and submit it as a *single* PDF file. Ensure your answers are written neatly, organized, and legible on paper.
- iii When using LATEX, follow one of these two conventions:
 - (a) Represent scalars with italic letters (a, A), vectors with bold lowercase letters (a, using \mathbf{a}), and matrices with bold uppercase letters (A, using \mathbf{A}), or
 - (b) Represent scalars with italic letters (a, A), vectors with bold letters (a, A), and matrices with typewriter uppercase letters (A, using \mathtf{A}).
- iv Your LATEX document must include a *title*, a *date*, and your name as the *author*.
- v If writing on paper, submit a *single* PDF file; do not send multiple image files.
- vi If using LATEX, submit the *.tex* source file (along with any other required source files) in addition to the PDF file.

Here is a short tutorial on LATEX: https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Questions For each questions, you may use the results of the previous questions (but not the following questions).

Matrices

- 1. Consider a matrix $A \in \mathbb{R}^{m \times n}$, such that $A\mathbf{x} = 0$ for all $\mathbf{x} \in \mathbb{R}$. Prove that $A = \mathbf{0}_{m \times n}$, that is all the entries of A are zero.
- 2. Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, such that $\mathbf{A} \mathbf{x}_i = 0$ for $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^n$, where $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ form a basis for \mathbb{R}^n . Prove that $\mathbf{A} = 0_{m \times n}$.
- 3. Consider a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ for which $\mathbf{A}\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Prove that $\mathbf{A} = \mathbf{I}_n$, the *n* by *n* identity matrix.
- 4. Give an example of a matrix $\mathbf{A} \in \mathbb{R}$, such that $\mathbf{A}\mathbf{x} = \mathbf{x}$ for some nonzero vector $\mathbf{x} \in \mathbb{R}^n$, \mathbf{A} is not the identity matrix.

- 5. Assume that the vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ are linearly independent. Prove that the set of vectors $\mathbf{a}'_1, \mathbf{a}_2, ..., \mathbf{a}_n$ are also linearly independent where $\mathbf{a}'_1 = \mathbf{a}_1 + \beta \mathbf{a}_2$ for some scalar β .
- 6. Consider two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$. Prove that $\mathcal{C}(\mathbf{A}) \subseteq \mathcal{C}(\mathbf{AB})$, where $\mathcal{C}(\cdot)$ represents the column space.
- 7. Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a square *invertible* matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$. Prove that $\mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{AB})$. (Hint: to prove that two sets S_1 and S_2 are equation you can show $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$).
- 8. Consider two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ where B has full row rank (i.e. rank(B) = n). Prove that $\mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{A}B)$.

Matrix Multiplication

9. Consider the matrices $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}$, $\mathbf{D} = \text{diag}([d_1, d_2, \dots, d_n]) \in \mathbb{R}^{n \times n}$, $\mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n] \in \mathbb{R}^{p \times n}$, where \mathbf{D} is a diagonal matrix with diagonal elements d_i . Show that

$$\mathtt{ADB}^T = \sum_{i=1}^n d_i \, \mathbf{a}_i \mathbf{b}_i^T$$

Linear Equations

To answer the following questions you need to use the fact that the set of solutions to a system of linear equations $\mathbf{A} \mathbf{x} = \mathbf{b}$ is in the form of $\{\mathbf{x}_p + \mathbf{x}_n \mid \mathbf{x}_n \in \mathcal{N}(\mathbf{A})\}$, where \mathbf{x}_p is a particular solution.

- 10. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a fat matrix (i.e. m < n) with full row rank and $\mathbf{b} \in \mathbb{R}^m$. Show that $\mathbf{A} \mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- 11. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a tall matrix (i.e. m > n) with full column rank and $\mathbf{b} \in \mathbb{R}^m$. Show that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has either no solution or exactly one solution.
- 12. Consider the system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, and let \mathcal{S} be the set of solutions to it. Show that
 - (a) S is a linear subspace if and only if $\mathbf{b} = \mathbf{0}$.
 - (b) If S is nonempty, then there exists a vector $\mathbf{y} \in \mathbb{R}^n$ such that the set $\{\mathbf{z} \mathbf{y} \mid \mathbf{z} \in S\}$ is a linear subspace.

Projections

- 13. Consider a linear subspace S and a vector $\mathbf{y} \in S$. Using the projection formula, show that the projection of \mathbf{y} into S is itself.
- 14. For a linear subspace $S \subseteq \mathbb{R}^n$ its orthogonal complement is defined as $S^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y}^T \mathbf{x} = 0 \text{ for all } \mathbf{x} \in S \}$. In other words, S^{\perp} comprises all the vectors that are perpendicular to all vectors in S. Show that the orthogonal complement of a linear subspace is a linear subspace.
- 15. Prove that the *null space* of a matrix is the orthogonal complement of its *row space*.

Determinant

- 16. Show that $\det(\mathbf{A}^{-1}) = 1/\det(\mathbf{A})$.
- 17. Prove that the determinant of an orthogonal matrix is either equal to 1 or -1. (Hint: use the definition of an orthogonal matrix.)
- 18. Show that the determinant of a projection matrix is either equal to 0 or 1. (Hint: remember that projections are *idempotent*.) How do you explain this geometrically?

Eigenvalues and Eigenvectors

- 19. What is the relation between the eigenvalues and eigenvectors of the square matrix A and those of $A \alpha I$ where $\alpha \in \mathbb{R}$ and I is the identity matrix?
- 20. Prove that any eigenvalue of A is also an eigenvalue of A^T . (Hint: use the characteristic polynomial).
- 21. The square matrix A is called (left) stochastic (or a Markov matrix) if its elements are nonnegative and its columns add up to 1 (programmatically sum(A,axis=0) == ones((1,n))). Prove that A has at least one unit eigenvalue $\lambda = 1$. (Hint: First prove that A^T has a unit eigenvalue.)
- 22. Let **v** be an eigenvector of **A** with a nonzero corresponding eigenvalue $\lambda \neq 0$. Prove that **v** is in the column space of **A**.
- 23. Let A be a real symmetric matrix with real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, and corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \in \mathbb{R}^n$. Prove that if $\lambda_i \neq \lambda_j$ then $\mathbf{v}_i \perp \mathbf{v}_j$.