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Read these first:
i To achieve the full score, you need to write your solutions using
LATEX. If you choose to write your solutions on paper or in a word
processing software (e.g., MS Word, LibreOffice), you can receive up
to 90% of the score.

ii If writing on paper, you must use a scanner or a camera scanning
app (e.g., CamScanner) to scan the document and submit it as a
single PDF file. Ensure your answers are written neatly, organized,
and legible on paper.

iii When using LATEX, follow one of these two conventions:

(a) Represent scalars with italic letters (a,A), vectors with bold
lowercase letters (a, using \mathbf{a}), and matrices with bold
uppercase letters (A, using \mathbf{A}), or

(b) Represent scalars with italic letters (a,A), vectors with bold
letters (a, A), and matrices with typewriter uppercase letters
(A, using \mathtt{A}).

iv Your LATEXdocument must include a title, a date, and your name as
the author.

v If writing on paper, submit a single PDF file; do not send multiple
image files.

vi If using LATEX, submit the .tex source file (along with any other
required source files) in addition to the PDF file.

Here is a short tutorial on LATEX: https://www.overleaf.com/learn/

latex/Learn_LaTeX_in_30_minutes

Questions For each questions, you may use the results of the previous ques-
tions (but not the following questions).

Matrices

1. Consider a matrix A ∈ Rm×n, such that Ax = 0 for all x ∈ R . Prove that
A = 0m×n, that is all the entries of A are zero.

2. Consider a matrix A ∈ Rm×n, such that Axi = 0 for x1,x2, ...,xn ∈ Rn,
where x1,x2, . . . ,xn form a basis for Rn. Prove that A = 0m×n.

3. Consider a square matrix A ∈ Rn×n for which Ax = x for all x ∈ Rn.
Prove that A = In, the n by n identity matrix.

4. Give an example of a matrix A ∈ R, such that Ax = x for some nonzero
vector x ∈ Rn, A is not the identity matrix.
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5. Assume that the vectors a1,a2, ...,an are linearly independent. Prove
that the set of vectors a′1,a2, ...,an are also linearly independent where
a′1 = a1 + βa2 for some scalar β.

6. Consider two matrices A ∈ Rm×n and B ∈ Rn×p. Prove that C(A) ⊆ C(AB),
where C(·) represents the column space.

7. Consider a matrix A ∈ Rm×n and a square invertible matrix B ∈ Rn×n.
Prove that C(A) = C(AB). (Hint: to prove that two sets S1 and S2 are
equation you can show S1 ⊆ S2 and S2 ⊆ S1).

8. Consider two matrices A ∈ Rm×n and B ∈ Rn×p where B has full row rank
(i.e. rank(B) = n). Prove that C(A) = C(A B).

Matrix Multiplication

9. Consider the matrices A = [a1,a2, . . . ,an] ∈ Rm×n, D = diag([d1, d2, . . . , dn]) ∈
Rn×n, B = [b1,b2, . . . ,bn] ∈ Rp×n, where D is a diagonal matrix with di-
agonal elements di. Show that

ADBT =

n∑
i=1

di aib
T
i

.

Linear Equations

To answer the following questions you need to use the fact that the set of
solutions to a system of linear equations Ax = b is in the form of {xp + xn |
xn ∈ N (A)}, where xp is a particular solution.

10. Let A ∈ Rm×n be a fat matrix (i.e. m < n) with full row rank and b ∈ Rm.
Show that Ax = b has infinitely many solutions.

11. Let A ∈ Rm×n be a tall matrix (i.e. m > n) with full column rank and
b ∈ Rm. Show that Ax = b has either no solution or exactly one solution.

12. Consider the system of linear equations Ax = b with A ∈ Rm×n and
b ∈ Rm, and let S be the set of solutions to it. Show that

(a) S is a linear subspace if and only if b = 0.

(b) If S is nonempty, then there exists a vector y ∈ Rn such that the set
{z− y | z ∈ S} is a linear subspace.
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Projections

13. Consider a linear subspace S and a vector y ∈ S. Using the projection
formula, show that the projection of y into S is itself.

14. For a linear subspace S ⊆ Rn its orthogonal complement is defined as
S⊥ = {y ∈ Rn | yTx = 0 for all x ∈ S}. In other words, S⊥ comprises
all the vectors that are perpendicular to all vectors in S. Show that the
orthogonal complement of a linear subspace is a linear subspace.

15. Prove that the null space of a matrix is the orthogonal complement of its
row space.

Determinant

16. Show that det(A−1) = 1/ det(A).

17. Prove that the determinant of an orthogonal matrix is either equal to 1
or −1. (Hint: use the definition of an orthogonal matrix.)

18. Show that the determinant of a projection matrix is either equal to 0 or 1.
(Hint: remember that projections are idempotent.) How do you explain
this geometrically?

Eigenvalues and Eigenvectors

19. What is the relation between the eigenvalues and eigenvectors of the square
matrix A and those of A− αI where α ∈ R and I is the identity matrix?

20. Prove that any eigenvalue of A is also an eigenvalue of AT . (Hint: use the
characteristic polynomial).

21. The square matrix A is called (left) stochastic (or a Markov matrix) if its
elements are nonnegative and its columns add up to 1 (programmatically
sum(A,axis=0) == ones((1,n))). Prove that A has at least one unit
eigenvalue λ = 1. (Hint: First prove that AT has a unit eigenvalue.)

22. Let v be an eigenvector of A with a nonzero corresponding eigenvalue
λ ̸= 0. Prove that v is in the column space of A.

23. Let A be a real symmetric matrix with real eigenvalues λ1, λ2, . . . , λn, and
corresponding eigenvectors v1,v2, . . . ,vn ∈ Rn. Prove that if λi ̸= λj

then vi ⊥ vj .


