Mathematics for AI Homework 3

Read these first:

- i To achieve the full score, you need to write your solutions using $I_{\rm ATE}X$. If you choose to write your solutions on paper or in a word processing software (e.g., MS Word, LibreOffice), you can receive up to 90% of the score.
- ii If writing on paper, you must use a scanner or a camera scanning app (e.g., CamScanner) to scan the document and submit it as a *single* PDF file. Ensure your answers are written neatly, organized, and legible on paper.
- iii When using LAT_FX, follow one of these two conventions:
 - (a) Represent scalars with italic letters (a, A), vectors with bold lowercase letters (a, using \mathbf{a}), and matrices with bold uppercase letters (A, using \mathbf{A}), or
 - (b) Represent scalars with italic letters (a, A), vectors with bold letters (a, A), and matrices with typewriter uppercase letters (A, using \mathtf{A}).
- iv Your $\mbox{LAT}_{\ensuremath{\underline{E}}} X \mbox{document must include a } title, a date, and your name as the author.$
- v If writing on paper, submit a *single* PDF file; do not send multiple image files.
- vi If using LATEX, submit the *.tex* source file (along with any other required source files) in addition to the PDF file.

Here is a short tutorial on LATEX: https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Questions

For each questions, you may use the results of the previous questions (but not the following questions).

Positive Definite Matrices

For all question in this section, by *positive definite* we mean *symmetric positive definite*.

- 1. Prove that a symmetric matrix is positive definite if and only if all its eigenvalues are positive. (Remember from the class that the eigen-decomposition of a symmetric matrix is in the form of $\mathbf{A} = \mathbf{V} \mathbf{A} \mathbf{V}^{-1} \mathbf{V} \mathbf{A} \mathbf{V}^{T}$.)
- 2. Show that the diagonal elements of a positive definite matrix are all positive definite.
- 3. Remember from the class that an operation $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ defined on a vector space \mathcal{V} is an *inner product* if
 - (a) $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ for all $\mathbf{u} \in \mathcal{V}$,
 - (b) $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$,
 - (c) $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{V}$,
 - (d) $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$.

Let $A \in \mathbb{R}^{n \times n}$ be any *positive definite* matrix. Show that the operation $\langle \cdot, \cdot \rangle_A : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}} = \mathbf{u}^T \mathbf{A} \mathbf{v}$$

is indeed an inner product.

Singular Value Decomposition

- 4. Let \mathbf{A} be a nonsingular square matrix and $A = \mathbf{U}\Sigma\mathbf{V}^T$ be its (full) SVD. Prove that $\det(\mathbf{U}) \det(\mathbf{V}) = \operatorname{sign}(\det(\mathbf{A}))$, that is $\det(\mathbf{U}) \det(\mathbf{V}) = 1$ if $\det(\mathbf{A}) > 0$ and $\det(\mathbf{U}) \det(\mathbf{V}) = 1$ if $\det(\mathbf{A}) < 0$.
- 5. Show that for a symmetric positive definite matrix the eigenvalue decomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{T}$ is the same as the singular value decomposition.
- 6. Find a way to obtain the SVD of a symmetric matrix from its eigenvalue decomposition $\mathbf{A} = \mathbf{V} \mathbf{A} \mathbf{V}^T$. Notice that the diagonal elements of $\mathbf{\Lambda}$ might be negative.
- 7. Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and two orthogonal matrices $\mathbf{P} \in \mathbb{R}^{m \times m}$ and $\mathbf{Q} \in \mathbb{R}^{n \times n}$. Show that the singular values of PAQ is the same as the singular values of A.

Matrix inner product

- 8. Perhaps the simplest way to define an inner product between a pair of matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ is $\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}$. This is the same as vectorizing the matrices and taking their dot product, and is sometimes called the *Frobenius Inner Product*.
 - (a) Prove that real matrices $\langle \mathbf{A}, \mathbf{B} \rangle = \text{trace}(\mathbf{A}^T \mathbf{B}) = \text{trace}(\mathbf{B}^T \mathbf{A}) = \text{trace}(\mathbf{A}\mathbf{B}^T)$, where $\text{trace}(\mathbf{S}) = \sum_i S_{ii}$ gives the sum of the diagonal elements of a square matrix \mathbf{S} .
 - (b) Prove that $\langle AB, C \rangle = \langle B, A^T C \rangle = \langle A, CB^T \rangle$ Hint: $(AB)^T = B^T A^T$.

Note: Same results hold for complex matrices by replacing the transpose operation with conjugate transpose: $\langle AB, C \rangle = \langle B, A^*C \rangle = \langle A, CB^* \rangle$.

Matrix Norms

- 9. Show that the squred Frobenius norm is the same as the Frobenius inner product of a matrix by itself, that is $\|\mathbf{A}\|_{F}^{2} = \langle \mathbf{A}, \mathbf{A} \rangle$.
- 10. A matrix norm is called Unitarily Invariant if $\|\mathbf{A}\| = \|\mathbf{U}\mathbf{A}\mathbf{V}\|$ for any orthogonal matrices \mathbf{U} and \mathbf{V} of compatible size. Using the above and the properties of matrix inner product prove that the Frobenius norm is unitarily invariant. Notice that for orthogonal matrices we have $\mathbf{U}^T\mathbf{U} = \mathbf{U}\mathbf{U}^T = \mathbf{I}$. (A more general definition that also works for complex matrices is when \mathbf{U} and \mathbf{V} are unitary, that is $\mathbf{U}^*\mathbf{U} = \mathbf{U}\mathbf{U}^* = \mathbf{I}$).
- 11. Use Question 7 to prove that the *spectral norm* and *nuclear norm* are also unitarily invariant.

Adjoint

Consider two inner product spaces \mathcal{U} and \mathcal{V} . A mapping $f^* \colon \mathcal{V} \to \mathcal{U}$ is called the *adjoint* of the linear map $f \colon \mathcal{U} \to \mathcal{V}$ if

$$\langle \mathbf{y}, f(\mathbf{x}) \rangle = \langle f^*(\mathbf{y}), \mathbf{x} \rangle,$$

for all $\mathbf{x} \in \mathcal{U}$ and $\mathbf{y} \in \mathcal{V}$.

- 12. Show that for the linear map $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ defined by $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ the adjoint is defined by $f^*(\mathbf{y}) = \mathbf{A}^T \mathbf{y}$.
- 13. Show that the diag(\cdot) and Diag(\cdot) operations defined below are adjoints of each other (with respect to the ordinary dot product defined in previous assignments).

The operations diag() and $Diag(\cdot)$ are defined as follows:

• diag(A) creates a vector $\in \mathbb{R}^n$ from the diagonal elements of the matrix $A \in \mathbb{R}^{m \times n}$, and

Mathematics for AI Fall 2024 Behrooz Nasihatkon

• $\text{Diag}(\mathbf{x})$ creates an $n \times n$ diagonal matrix whose diagonal elements are the entries of $\mathbf{x} \in \mathbb{R}^n$.

Notice that both these operations are linear.