Mathematics for AI Homework 4

Read these first:

- i To achieve the full score, you need to write your solutions using $I_{\rm ATE}X$. If you choose to write your solutions on paper or in a word processing software (e.g., MS Word, LibreOffice), you can receive up to 90% of the score.
- ii If writing on paper, you must use a scanner or a camera scanning app (e.g., CamScanner) to scan the document and submit it as a *single* PDF file. Ensure your answers are written neatly, organized, and legible on paper.
- iii When using LAT_FX, follow one of these two conventions:
 - (a) Represent scalars with italic letters (a, A), vectors with bold lowercase letters (a, using \mathbf{a}), and matrices with bold uppercase letters (A, using \mathbf{A}), or
 - (b) Represent scalars with italic letters (a, A), vectors with bold letters (a, A), and matrices with typewriter uppercase letters (A, using \mathtf{A}).
- iv Your $\mbox{LAT}_{\ensuremath{\underline{E}}} X \mbox{document must include a } title, a date, and your name as the author.$
- v If writing on paper, submit a *single* PDF file; do not send multiple image files.
- vi If using LATEX, submit the *.tex* source file (along with any other required source files) in addition to the PDF file.

Here is a short tutorial on $I\!\!AT_E\!X$: https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Questions

For each questions, you may use the results of the previous questions (but not the following ones).

Throughout this document, the operations diag() and $\mathrm{Diag}(\cdot)$ are defined as follows:

- diag(A) creates a vector $\in \mathbb{R}^n$ from the diagonal elements of the matrix $A \in \mathbb{R}^{m \times n}$, and
- $\text{Diag}(\mathbf{x})$ creates an $n \times n$ diagonal matrix whose diagonal elements are the entries of $\mathbf{x} \in \mathbb{R}^n$.

Notice that both these operations are linear.

Multivariate Calculus

- 1. Show that for a symmetric matrix B the gradient of $1/(\mathbf{x}^T B \mathbf{x})$ with respect to \mathbf{x} is $-2B\mathbf{x}/(\mathbf{x}^T B \mathbf{x})^2$ wherever the gradient exists at \mathbf{x} .
- 2. Show that for symmetric matrices A and B the gradient of $f(\mathbf{x}) = (\mathbf{x}^T \mathbf{A} \mathbf{x})/(\mathbf{x}^T \mathbf{B} \mathbf{x})$ with respect to x is equal to

 $2(\mathbf{A}\mathbf{x}(\mathbf{x}^T\mathbf{B}\mathbf{x}) - \mathbf{B}\mathbf{x}(\mathbf{x}^T\mathbf{A}\mathbf{x}))/(\mathbf{x}^T\mathbf{B}\mathbf{x})2 = 2(\mathbf{A}\mathbf{x} - f(\mathbf{x})\mathbf{B}\mathbf{x})/(\mathbf{x}^T\mathbf{B}\mathbf{x}),$

if the gradient exists at \mathbf{x} .

- 3. Let A be symmetric. Calculate the gradient of $\exp(-\mathbf{x}^T \mathbf{A} \mathbf{x})$ with respect to \mathbf{x} .
- 4. Let A be (symmetric) positive definite. Compute the gradient of $\log(1 + \mathbf{x}^T \mathbf{A} \mathbf{x})$ with respect to \mathbf{x} .
- 5. Consider the function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} / \|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{A} \mathbf{x} / (\mathbf{x}^T \mathbf{x})$ defined for a symmetric matrix **A**. Show that the critical points of f include $\mathbf{x} = \mathbf{0}$ plus the eigenvectors of **A**. The critical points of a function f are those at which the gradient is zero or nonexistant.
- 6. Consider the function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} / (\mathbf{x}^T \mathbf{B} \mathbf{x})$ defined for symmetric matrices **A** and **B**. Show that if **B** is invertible then the critical points of f are either the points for which $\mathbf{x}^T \mathbf{B} \mathbf{x} = 0$ or the eigenvectors of $\mathbf{B}^{-1} \mathbf{A}$.

Jacobian

- 7. Derive the Jacobian matrix for the following with respect to $\mathbf{x} \in \mathbb{R}^n$ using the directional derivative method.
 - (a) $Diag(\mathbf{x}) \mathbf{x}$,
 - (b) $\operatorname{Diag}(\mathbf{x}) \mathbf{a} \mathbf{a}^T \mathbf{x}$ where $\mathbf{a} \in \mathbb{R}^n$,
 - (c) $A \operatorname{Diag}(\mathbf{x}) \mathbf{x}$ where $A \in \mathbb{R}^{n \times n}$,
 - (d) $(\mathbf{x}^T \mathbf{A} \mathbf{x})^2 \mathbf{A} \mathbf{x}$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$,

Quadratic Forms

8. Consider the quadratic form $f : \mathbb{R}^2 \to \mathbb{R}$ defined as $f(\mathbf{x}) = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$, where

$$\tilde{\mathtt{A}} = \left[\begin{array}{cc} 1 & 2 \\ 4 & -1 \end{array} \right].$$

Find a symmetric matrix A such that $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$.

9. Show that for every function $f \colon \mathbb{R}^n \to \mathbb{R}$ defined as $f(\mathbf{x}) = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$ with $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$, there exists a *symmetric* matrix \mathbf{A} such that $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$.

Hessian

- 10. Find the Gradient and the Hessian for the following with respect to $\mathbf{x} \in \mathbb{R}^n$
 - (a) trace($\mathbf{x} \mathbf{A} \mathbf{x}^T$),
 - (b) $\mathbf{x}^T \operatorname{Diag}(\mathbf{x}) \mathbf{x}$,
 - (c) $(\mathbf{x}^T \mathbf{A} \mathbf{x})^2$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric matrix,
 - (d) $(\mathbf{x}^T \mathbf{A} \mathbf{x})/(\mathbf{x}^T \mathbf{B} \mathbf{x})$ where $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ are symmetric,
 - (e) $\sum_{i=1}^{n} \sqrt{\mathbf{x}^T \mathbf{A}_i \mathbf{x}}$ where $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ are (symmetric) positive definite.