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Lab Instructions - session 4 
Linear Equations 

Solving linear equations 
Look at the code below.  
solve_eq.py 
import numpy as np 
import timeit 
 
N = 100 
 
A = np.random.randn(N,N) 
x = np.random.randn(N) 
b = A @ x 
 
x1 = np.linalg.solve(A,b) 
x2 = np.linalg.inv(A) @ b 
 
print('error1=', np.linalg.norm(x-x1)) 
print('error2=', np.linalg.norm(x-x2)) 
 
print('elapsed1=', timeit.timeit(lambda : np.linalg.solve(A,b), number=100)) 
print('elapsed2=', timeit.timeit(lambda : np.linalg.inv(A) @ b, number=100)) 

● What does the above do? Explain. (the function np.linalg.norm gives the 
length of a vector) 

● Which method is more accurate? Using np.linalg.solve or using the 
inverse?  

● Which method is faster? 
● Set N to a larger number and look at the results.  
● Set the true x to a matrix x = np.random.randn(N,P) with P=100, so that 

b becomes a matrix of the same size. Which method is faster? Choose a 
larger P. What happens? 

Task 1 - Purtub 
In many real-world applications, we do not have access to the true vector of 
measurements b = A x, but rather a perturbed version of it (noisy measurements). 
To simulate this scenario, we introduce noise by generating random perturbations 
and adding them to the calculated measurement vector: 
 
noise = 0.001 * np.random.randn(N) 
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b = A @ x + noise 

● solve the system of linear equations A x = b with the noisy version of b. 
Observe how the perturbation affects the error.  

● Double the size of the perturbation and see how the error changes. To have a 
fair comparison you need to solve with b= A@x + 2*noise with the same 
values of A, x, and noise (do not recreate them).  

Task 2 - Singular case 
Change the initial code (no noise added to b) such that A is singular. Here is one 
way to do it. 
A = np.random.randn(N,N) 
A[:,N-1] = A[:,N-2] 

● Why is A singular?  
● What happens when you try to solve the equations?  

Task 3 - Near-singular case 
In many real-world scenarios, the matrix A may not be exactly singular, but rather 
near-singular. This means that the matrix is very close to a singular matrix (A 
singular matrix plus a small perturbation). Here we create such a scenario: 
A = np.random.randn(N,N) 
A[:,N-1] = A[:,N-2] 
A += 0.00001 * np.random.randn(N,N) 

● Compare the (order of) magnitude of the errors with the non-singular case. 
What happens as we bring A closer to a singular matrix (make 0.00001 
smaller)? 

Task 4 - The effect of perturbation in near-singular case 
Repeat task 1 but this time with a near-singular matrix A. How does a small 
perturbation affect the error in a near-singular case? 
 

Task 5 
Singular Value Decomposition (SVD) is a powerful tool for solving linear systems, 
especially when the coefficient matrix is singular or ill-conditioned. Write a program 
to solve a linear system Ax=b using SVD such that: 
A = [ [1,1] , [2,2] ] 
b = [3,6] 
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• You may use np.linalg.svd() to obtain SVD. 
• Try to use np.linalg.solve() for solving the above system. What do you 

observe? 
• (Optional): Plot the solution space. 

Back to the Face Models 
Remember the linear combination of faces from Lab 2 where you had to tune the 
scalars a, b, and c to reconstruct TargetFace2 as a linear combination of  Face1,  
Face2, and  Face3: 
 
face1.py 
import matplotlib.pyplot as plt 
import numpy as np 
from face_data import Face1, Face2, Face3, TargetFace2, edges 
 
def plot_face(plt,X,edges,color='b'): 
    "plots a face" 
    plt.plot(X[:,0], X[:,1], 'o', color=color, markersize=3) 
    for i,j in edges: 
        xi = X[i,0] 
        yi = X[i,1] 
        xj = X[j,0] 
        yj = X[j,1] 
        # draw a line between X[i] and X[j] 
        plt.plot((xi,xj), (yi,yj), '-', color=color) 
    plt.axis('square') 
    plt.xlim(-100,100) 
    plt.ylim(-100,100) 
# make a guess 
a = 1/3. 
b = 1/3. 
c = 1/3. 
 
Face = a * Face1 + b * Face2 + c * Face3 
 
plot_face(plt, TargetFace2, edges, color='r') 
plot_face(plt, Face, edges, color='g') 
# change a,b,c until the two plots align 
plt.show() 

 
In Lab 2 we found a, b, and c by trial and error. Now, we find them analytically.  
To do this, first, vectorize the 68 by 2 face matrices to obtain 136-dimensional 
vectors: 
face1 = Face1.ravel() 
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face2 = Face2.ravel() 
face3 = Face3.ravel() 
t = TargetFace2.ravel(); 

 
Then, arrange the face vectors as the columns of a 136 by 3 matrix F: 
F = np.stack((face1, face2, face3), axis=1) 

 
Let x = [a,b,c]T. The relation F x = t gives a system of 136 equations and 3 
unknowns. Solving for x gives the coefficients a, b, and c. 

Task 6 
Choose the first 3 equations from the above to get a system of 3 equations and 3 
unknowns. Solve the equations to find a, b, and c. 
task5.py 
x = # solve the equations 
a,b,c = x 
Face = a * Face1 + b * Face2 + c * Face3 
 
plot_face(plt, TargetFace2, edges, color='r') 
plot_face(plt, Face, edges, color='g') 
plt.show() 

Task 7 
Instead of choosing the first three equations from F x = t, choose three random 
equations. You may use np.random.choice to select 3 indices without 
replacement.  
task6.py 
for i in range(5): 
    inds = np.random.choice(range(136), 3, replace=False) 
    # choose the equations 
    a,b,c = # solve the equations 
 
    Face = a * Face1 + b * Face2 + c * Face3 
    plot_face(plt, TargetFace2, edges, color='r') 
    plot_face(plt, Face, edges, color='g') 
    plt.show() 

● Does choosing a different set of equations affect the result? 
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Task 8 - Noisy measurements 
Add a little Gaussian noise to the target face. This is similar to what we did in Task 1.  

TargetFace2 += 3 * np.random.randn(*TargetFace2.shape) 

 
Now, repeat Task 6. What happens? 

● Do we get a face close to TargetFace2 in most iterations? 
● Does the quality of the result depend on the choice of the 3 equations? 
● Why do you think this happens?  
● (Optional) Can you think of a better way to find the coefficients a,b,c? 


	Solving linear equations
	Task 1 - Purtub
	Task 2 - Singular case
	Task 3 - Near-singular case
	Task 4 - The effect of perturbation in near-singular case
	Back to the Face Models
	Task 6
	Task 7
	Task 8 - Noisy measurements

