Mathematics for AI

Lecture 2

Vectors, Vector Space, Span, Basis, Coordinates

Machine Learning

Learning from data

https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/

airplane	🛁 🔊 🚧 📈 🍬 = 🛃 🐝 🛶 💒
automobile	ar 🗱 🚵 🚘 😻 🜌 🚔 🐝
bird	ria 🖉 💋 🕺 🔊 🖉 🖉 💓
cat	li 🖉 📚 🔝 🎇 🐜 🕰 🖉 🤝
deer	M 💥 😭 🥐 🦗 💱 🐩 🗱 🥔
dog	97. 🔬 🖚 🛗 🉈 🥘 🧑 🔊 🌋
frog	Se S
horse	🐨 🐟 🚧 法 🕅 📷 🖙 🏹 🐞
ship	😂 🌌 📥 🚢 📥 💋 💉 🔛 🙇
truck	🚄 🎑 🚛 🌉 🜉 🚞 🚵 🕋 🚮

<u>http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/</u>

airplane automobile bird cat deer dog frog horse ship

truck

Training data: X_{1}, y_{1} $X_{2}^{}, y_{2}^{}$ X_{3}, Y_{3} X_n, Y_n

<u>http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/</u>

airplane	🚧 🐹 🖊 🗡 🐂 🌌 🐝 🛶 🍛
automobile	ar 🐳 🚵 🚘 🔤 🔤 📾 🛸
bird	in the second
cat	li 🖉 📚 🔛 🎇 🐜 🕰 💉 蒙
deer	M 🖌 🦟 🎉 😪 🕷 🖉
dog	93. 🔬 🛹 🕃 🉈 🎑 👩 📢 🔊 🎉
frog	ST 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
horse	🚽 🐼 🐹 🕅 📷 🖙 🍇 🕷
ship	😂 🏄 📥 🚢 📥 🌽 🖉 🚵
truck	🚄 🍱 🚛 🌉 🧱 🚞 📷 🛵 🚞 🚮

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Training data:

airplane	🚟 📉 🖊 🤛 T 🛃 🔐 🛶 💒
automobile	ar 🖏 🚵 🐭 🐭 🚔 🐝
bird	in the second
cat	Si S
deer	M 🐪 🖌 🥐 🏹 🕎 😭 🗱 🌌
dog	97. 🔬 🛹 🕃 🉈 🏹 🥳 🔊 🌋
frog	ST - C - C - C - C - C - C - C - C - C -
horse	🕌 🐭 🎥 👘 🕅 📷 🖙 🐝 🕷
ship	🗃 🌌 🖛 🕍 🛶 💋 🖉 🚈
truck	🚄 🍱 🛵 🎆 🧱 🚞 🥁 🕋 🚮

Training data:

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Classification

input features Classifier
$$y \in \{Class_1, Class_2, ..., Class_n\}$$

Classification

Classification

Regression

input features

Regression

input features

Regression

Learnable Models

Learnable Models: Example

Learnable Models: Example

Learnable Models: Input-output map

y = f(x)

f: $\mathbb{R}^m \rightarrow \mathbb{R}^n$

Learnable Models: Input-output map

 $y = f(x, \theta)$

 $f: \mathbb{R}^m \to \mathbb{R}^n$

Learnable Models: Input-output map

 $y = f(x, \theta) \quad \theta \in \mathbb{R}^{k}$

f: $\mathbb{R}^m \times \mathbb{R}^k \rightarrow \mathbb{R}^n$

Learnable Models: Example

 $y = f(x, \theta)$

f: $\mathbb{R}^m \times \mathbb{R}^k \to \mathbb{R}^n$

Feature space

https://www.petersincak.com/news/why-i-do-not-believe-in-erro r-backpropagation/ Input Space Feature Space

Ф

https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f

Unsupervised Learning

https://towardsdatascience.com/machine-learning-types-and-algorithms-d8b79545a6ec

Neural Networks

Natural Language Processing

ChatGPT ~

K. N. Toosi

What are the applications of mathematics in AI?

Mathematics forms the foundation of many key concepts in AI, providing the theoretical frameworks, algorithms, and models that drive AI systems. Here are the main areas of mathematics and their applications in AI:

1. Linear Algebra

- Applications: Linear algebra is essential for representing and manipulating data in AI models. Vectors, matrices, and tensors are widely used to represent inputs, outputs, and transformations in algorithms like neural networks.
- Specific Use Cases:

Word Embedding

https://ruder.io/word-embeddings-1/

Word2Vec

https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30

What is a Vector?

What is a Vector?

https://mathinsight.org/vector introduction

Vector Scaling

https://semesters.in/unit-free-forced-fixed-vector/

Vector Scaling

Vector Addition

https://mathinsight.org/vector_introduction

Vector Addition

https://mathinsight.org/vector introduction

A set with a **structure**

Vector Space

Vector Space

- a set V
- scalars $\in \mathbb{R}$ (C, or any field)
- Vector addition + $(u + v \text{ for } u, v \in V)$
- scalar multiplication (a u for $a \in R, u \in V$)
 - Commutativity: u + v = v + u
 - Associativity: u + (v + w) = (u + v) + w
 - Identity element: $\exists z \in V : v + z = z + v = v$
 - Inverse: for each $v \in V$ there is v' : v + v' = z (z defined above)
 - (ab) v = a (b v)
 - **1 v = v**
 - a (u + v) = a u + a v
 - (a+b) v = a v + b v

(a is a scalar, u,v are vectors) (a,b are scalars, v is a vector)

$$\left\{ \begin{array}{c} (O, \ \odot, \ \odot, \ \odot, \ \Delta, \ \Box, \ \bullet, \ \bullet, \ \bullet \end{array} \right\}$$

$$2 * \ \odot = \ 0 \ \odot \odot \odot$$

$$\odot + \ \Delta = \ \bigtriangleup \odot$$

$$\odot + \cdot = \ \odot$$

(a,b are scalars)

Why bother?

Why bother? adding apples and pears?

Why bother?

Jerk

Cyborg

Image Averaging

Jerk

Shape+Appearance Averaging

Jerk Cyjerk Cyborg

K. N. Toosi University of Technology

Why bother? Average Faces by country

Why bother? Average Faces by country

Morphable Shape Models

https://www.youtube.com/watch?v=kJPRCLhTEPg&t=36s

Why bother? functions as vectors

https://en.wikipedia.org/wiki/Vector_space

Why bother? functions as vectors

Linear combination

Let a,b \in R. The vector a x + b y is a linear combination of the vectors x and y. $2\vec{x}+3\vec{y}$

$$a\vec{x} + b\vec{y}$$
 $a,b \in \mathbb{R}$

Let $a_i \in R$. The vector $a_1 x_1 + a_2 x_2 + \dots + a_n x_n$ is a linear combination of the vectors x_1, x_2, \dots, x_n .

Span

 $span(x,y) = \{a x + b y | a, b \in R\}$

The space of all linear combinations of x and y.

span(
$$x_1, x_2, ..., x_n$$
) = { $a_1 x_1 + a_2 x_2 + ... + a_n x_n \mid a_i \in R$ }

Span

We say that x_1, x_2, \dots, x_n span S if S = span(x_1, x_2, \dots, x_n).

x,y,z are dependent if

- $x \in span(y,z)$, OR
- $y \in span(z,x)$, OR
- $z \in span(x,y)$

that is

- x = a y + b z, for some a, b, OR
- y = a z + b x, for some a,b, OR
- z = a x + b y, for some a,b.

Linear dependence - Example

 $x_1, x_2, ..., x_n \in V$ are **linearly dependent** if one of them can be written as a linear combination of the others (one of them is in the span of the others).

x,y,z are independent if

- $x \notin span(y,z)$, AND
- $y \notin span(z,x)$, AND
- $z \notin span(x,y)$

$x_1, x_2, \dots, x_n \in V$ are **linearly independent** if none of them can be written as a linear combination of the others.

$x_1, x_2, \dots, x_n \in V$ are **linearly independent** if none of them can be written as a linear combination of the others.

Equivalently:

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 \implies a_1 = a_2 = \dots = a_n = 0$$

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 \implies a_1 = a_2 = \dots = a_n = 0$$

Basis

$v_1, v_2, ..., v_n \in V$ such that

- v₁, v₂, ..., v_n are linearly independent
- v₁, v₂, ..., v_n span V

Basis

- $v_1, v_2, ..., v_n \in V$ such that
 - v₁, v₂, ..., v_n are linearly independent
 - $v_1, v_2, ..., v_n \text{span } V$
- * n is the same for any choice of the basis vectors
- * n is called the dimension of V
- * There are also infinite dimensional vector spaces

Basis - Example

 \mathbb{R}^3 XI X3 X2 YX, XX2 XH X,, X2 x1, X2, X3, X4 {X, X2, X3} do not form a basis for 183 not a basis $span(x_1, x_2) \neq lp^3$ basis (i, j, k) a basis for 1R3 2

* Basis (general definition)

 $\{v_i\}_{i \in I} \subseteq V$ such that

- v_i's are linearly independent
- for any $v \in V$ there is a **finite** set of vectors $v_1, v_2, ..., v_d \in \{v_i\}_{i \in I}$ such that $v \in \text{span}(v_1, v_2, ..., v_d)$
- * Any vector space has a basis
- * cardinality of $\{v_i\}_{i \in I}$ is the same for any choice of the basis vectors
- * cardinality of $\{v_i\}_{i \in I}$ is called the dimension of V

Bases and Coordinate Representation

Why is independence needed? => uniqueness

every $x \in V$ can be written **uniquely** as a linear combination of the basis vectors $v_1, v_2, ..., v_n$.

Proof

$$\overrightarrow{V} \text{ is a finite dedimensional vector space.}}$$

$$\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n \text{ form a basis for } \overrightarrow{V}.$$
Consider an arbitrary vector $\overrightarrow{X} \in \overrightarrow{V}.$

$$\overrightarrow{X} \in \overrightarrow{V} \implies \overrightarrow{X} \in \text{span}(\overrightarrow{V}_1, \overrightarrow{V}_2, \overrightarrow{V}, \dots, \overrightarrow{V}_n)$$

$$\implies \overrightarrow{X} = a_1 \overrightarrow{V}_1 + a_2 \overrightarrow{V}_2 + \dots + a_n \overrightarrow{V}_n \text{ for some} a_1, \dots, a_n$$

$$\overrightarrow{X} = b_1 \overrightarrow{V}_1 + b_2 \overrightarrow{V}_2 + \dots + b_n \overrightarrow{V}_n$$

Proof

$$\Rightarrow \vec{X} = a_1 \vec{V}_1 + a_2 \vec{V}_2 + \dots + a_n \vec{V}_n \quad \text{for some} \\ \vec{X} = b_1 \vec{V}_1 + b_2 \vec{V}_2 + \dots + b_n \vec{V}_n \quad a_1, \dots a_n \\ (a_1 - b_1) \vec{V}_1 + (a_2 - b_2)\vec{V}_2 + \dots + (a_n - b_n) \vec{V}_n = \vec{0} \\ \vec{V}_1 - \vec{V}_n \quad \text{independent} \\ \Rightarrow a_1 - b_1 = a_2 - b_2 = \dots = a_n - b_n = \vec{0} \\ a_1 = b_1 \ a_2 = b_2, \dots, a_n = b_n \\ \vec{X} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \quad \text{cordinates of } \vec{X}$$

Bases and Coordinate Representation

=> Every nev can be written as a unique linear combination of u, , ... , un. n= a, u, + a2 u2 + ... + an un rail can be represented as az az ai. 02 dn/ an array of m = as numbers 03 an ai-s are colled coordinates of n - horas منعات به بردارمای بای واست است .

Example: The Euclidean space

