Mathematics for AI

Lecture 2

Vectors, Vector Space, Span, Basis
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Learning from data
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https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/

Supervised Learning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Lear'ning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Learning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Learning
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http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Supervised Learning
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Classification

y € {Class,, Class,, ..., Class }
input features Classifier




Classification
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Regression
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Regression
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Learnable Models
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Learnable Models: Example
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Learnable Models: Example
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Learnable Models: Input-output map

e f beyen

y = £(x)
f: RM _, RN




Learnable Models: Input-output map

e f beyen

y = f(x,0)

f! R™ - RN




Learnable Models: Input-output map

e f beyen

y=f(x) O=K

f: RMx Rk — RN




Learnable Models: Example
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Feature space
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https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f
https://www.petersincak.com/news/why-i-do-not-believe-in-error-backpropagation/
https://www.petersincak.com/news/why-i-do-not-believe-in-error-backpropagation/

Unsupervised Learning



https://towardsdatascience.com/machine-learning-types-and-algorithms-d8b79545a6ec

Neural Networks
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Natural Language Processing

ChatGPT

What are the applications of mathematics in Al?

Mathematics forms the foundation of many key concepts in Al, providing the
theoretical frameworks, algorithms, and models that drive Al systems. Here are
the main areas of mathematics and their applications in Al:

1. Linear Algebra

« Applications: Linear algebra is essential for representing and manipulating
data in Al models. Vectors, matrices, and tensors are widely used to

represent inputs, outputs, and transformations in algorithms like neural
networks.

« Specific Use Cases:




Word Embedding
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https://ruder.io/word-embeddings-1/

Word2Vec

Semantic Syntactic
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https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30

What is a Vector?
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What is a Vector?



https://mathinsight.org/vector_introduction

Vector Scaling



https://semesters.in/unit-free-forced-fixed-vector/

Vector Scaling



https://philschatz.com/precalculus-book/contents/m49412.html

Vector Addition



https://mathinsight.org/vector_introduction

Vector Addition



https://mathinsight.org/vector_introduction

Space

A set with a structure



Vector Space



Vector Space

aset V
scalars € R (C, or any field) ‘(O O, O.AN, 2 ;
Vector addition+ (u+v foruyv € V) 20-900

scalar multiplication (au fora € R,u € V)
o Commutativity:u+v=v+u

Q+A -
o Associatfivity: u+ (v+w) = (u+v)+w D+ - =
o Identityelement: 3 z€V: v+z=z+v=v

o Inverse: foreachv € Vthereis v' : v+v' =z (zdefined above)
o (ab)v=a(bv) (a,b are scalars)

o 1lv=v

o a(u+v)=au+av (a is a scalar, u,v are vectors)

o (atb)v=av+byv (a,b are scalars, v is a vector)



Why bother?



Why bother? adding apples and pears?




Why bother?




Image Averaging



Shape+Appearance Averaging




Why bother? Define vector addition and scaling




Why bother? Average Faces by counfr'y




Why bother? Average Faces by country
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Morphable Shape Models @

K. N. Toosi
University of Technology

https://www.youtube.com/watch?v=kJPRCLhTEPg&t=36s


http://www.youtube.com/watch?v=kJPRCLhTEPg

Why bother? functions as vectors

(sin + exp)(0.5)

sin(0.5)

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00



https://en.wikipedia.org/wiki/Vector_space




Linear combination

Let a,b € R. The vector a x + by is a linear combination of
the vectors x and y.

Let a € R. The vector a, X;+a, X, +..+a X is a linear

combination of the vectors x,, x,, ..., X .



Span

span(x,y)={ax+by|ab € R}

The space of all linear combinations of x andy.

span(x,, X,, ... X )={a; x;+a, x,+...+a x |a € R}



Span

We say that x,, X,

, .. X span S if S = span(x,, X,

LX),



Linear dependence

X,y,Z are dependent if

e X € span(y,z), OR
® y € span(z,x), OR
e z € span(x.y)

that is

e x=ay+bz forsomea,b, OR
e y-az+bx, forsomeab, OR
e z-ax+by,forsomea,b.



Linear dependence - Example
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Linear dependence

X, X,, ... X € V are linearly dependent if one of them
can be written as a linear combination of the others (one
of them is in the span of the others).



Linear independence

X,y,Z are independent if

e x ¢ span(y,z), AND
e y < span(z,x), AND
e z 4 span(x,y)



Linear independence

X{, X5, ... X € V are linearly independent if none of them
can be written as a linear combination of the others.



Linear independence

X{, X5, ... X € V are linearly independent if none of them
can be written as a linear combination of the others.

Equivalently:

alx1+azx2+....+anxn=0 — alzazz....=an:0



Linear independence

=0

n

alx1+azx2+....+anxn:O == a,=0a,=..=a




Basis

Vi, V,, .., ¥V, € Vsuch that
® V,V,, ..V are linearly independent
® V,V,, ..V span V



Basis

Vi, ¥y, ... V. € V such that
® V,V,, ..V are linearly independent
® Vv,V, ..,V span V

* n is the same for any choice of the basis vectors
* nis called the dimension of V

* There are also infinite dimensional vector spaces



Basis - Example
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* Basis (general definition)

{v} < € Vsuch that
e v.'sare linearly independent

e foranyv € V there is a finite set of vectorsv,,v,, .., v, € {v}._;such
that v € span(v,, v,, .., v,)

* Any vector space has a basis
* cardinality of {v}._; is the same for any choice of the basis vectors

* cardinality of {v.}._; is called the dimension of V



Bases and Coordinate Representation

Why is independence needed? => uniqueness

every X € V can be written uniquely as a linear combination of the basis

vectors Vii Vo, s V.
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Proof




Bases and Coordinate Representation
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Example: The Euclidean space



