
Mathematics for AI
Lecture 2

Vectors, Vector Space, Span, Basis, 
Coordinates 



Machine Learning

Modelinput
output



Learning from data

https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/ 

https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/


Supervised Learning

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/


Supervised Learning

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Training data:
X1, y1
X2, y2
X3, y3

:
Xn, yn

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/


Supervised Learning

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Training data:

Apple

Apple

Orange

⋮

Orange

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/


Supervised Learning

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/

Training data:

0

0

1

⋮

1

http://seansoleyman.com/effect-of-dataset-size-on-image-classification-accuracy/


Supervised Learning

Classifier/
Regressor

input
output



Classification

Classifierinput features
y ∈ {Class1, Class2, …, Classn} 



Classification

Classifier Apple



Classification

Classifier Orange



Regression

Regressor y ∈ R input 
features



Regression

Regressor y ∈ Rn input 
features



Regression



Learnable Models

Classifier/
Regressor

input output



Learnable Models: Example

Classifier 0



Learnable Models: Example

Classifier 1



Learnable Models: Input-output map

fx ∈ Rm y ∈ Rn  

y = f(x)

f: Rm →  Rn



Learnable Models: Input-output map

fx ∈ Rm y ∈ Rn  

y = f(x,θ)

f: Rm →  Rn



Learnable Models: Input-output map

fx ∈ Rm y ∈ Rn  

y = f(x,θ)

f: Rm x Rk  →  Rn

θ ∈ Rk   



Learnable Models: Example

fx = 
features(I) 

y = 0

y = f(x,θ)

f: Rm x Rk  →  Rn

I



Features

Classifier
Class

feature 
vector

feature 
extraction



Feature space

https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3fhttps://www.petersincak.com/news/why-i-do-not-believe-in-erro
r-backpropagation/

https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f
https://www.petersincak.com/news/why-i-do-not-believe-in-error-backpropagation/
https://www.petersincak.com/news/why-i-do-not-believe-in-error-backpropagation/


Unsupervised Learning

https://towardsdatascience.com/machine-learning-types-and-algorithms-d8b79545a6ec

https://towardsdatascience.com/machine-learning-types-and-algorithms-d8b79545a6ec


Neural Networks



Natural Language Processing



Word Embedding

https://ruder.io/word-embeddings-1/

https://ruder.io/word-embeddings-1/


Word2Vec

https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30

https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30


What is a Vector?



What is a Vector?

https://mathinsight.org/vector_introduction

https://mathinsight.org/vector_introduction


Vector Scaling

https://semesters.in/unit-free-forced-fixed-vector/

https://semesters.in/unit-free-forced-fixed-vector/


Vector Scaling

https://philschatz.com/precalculus-book/contents/m49412.html

https://philschatz.com/precalculus-book/contents/m49412.html


Vector Addition

https://mathinsight.org/vector_introduction

https://mathinsight.org/vector_introduction


Vector Addition

https://mathinsight.org/vector_introduction

https://mathinsight.org/vector_introduction


Space

A set with a structure



Vector Space



Vector Space

● a set V
● scalars ∈ R   (C, or any field)
● Vector addition +   (u + v  for u,v ∈ V) 
● scalar multiplication (a u   for a ∈ R, u ∈ V)

○ Commutativity: u + v = v + u
○ Associativity: u + (v + w)  = (u + v) + w
○ Identity element: ∃ z ∈ V :  v + z = z + v = v
○ Inverse: for each v ∈ V there is  v'    :   v + v' = z     (z defined above)
○ (ab) v = a (b v)                              (a,b are scalars)
○ 1 v = v    
○ a (u + v) = a u + a v                        (a is a scalar, u,v are vectors)
○ (a+b) v = a v + b v                          (a,b are scalars, v is a vector)



Why bother? 



Why bother? adding apples and pears?

+ = ?  



Why bother? 

Jerk CyborgCyjerk



Image Averaging

Jerk CyborgCyjerk



Shape+Appearance Averaging

Jerk CyborgCyjerk



Why bother? Define vector addition and scaling



Why bother? Average Faces by country



Why bother? Average Faces by country



Morphable Shape Models

https://www.youtube.com/watch?v=kJPRCLhTEPg&t=36s

http://www.youtube.com/watch?v=kJPRCLhTEPg


Why bother? functions as vectors

https://en.wikipedia.org/wiki/Vector_space 

https://en.wikipedia.org/wiki/Vector_space


Why bother? functions as vectors



Linear combination

Let a,b ∈ R. The vector a x + b y is a linear combination of 
the vectors x and y. 

Let ai ∈ R. The vector a1 x1 + a2 x2 + …. + an xn is a linear 
combination of the vectors x1, x2, …., xn.



Span

span(x,y) = { a x + b y | a,b ∈ R}

The space of all linear combinations of x and y. 

span(x1, x2, …. ,xn) = {a1 x1 + a2 x2 + …. + an xn | ai ∈ R }



Span

We say that x1, x2, …. ,xn span S if S = span(x1, x2, …. ,xn).



Linear dependence 

x,y,z are dependent if 

● x ∈ span(y,z), OR
● y ∈ span(z,x), OR
● z ∈ span(x,y)

that is 

● x = a y + b z, for some a, b, OR
● y = a z + b x, for some a,b, OR
● z = a x + b y, for some a,b. 



Linear dependence - Example



Linear dependence 

x1, x2, …. ,xn ∈ V are linearly dependent if one of them 
can be written as a linear combination of the others (one 
of them is in the span of the others).



Linear independence 

x,y,z are independent if 

● x ∉ span(y,z), AND
● y ∉ span(z,x), AND
● z ∉ span(x,y)



Linear independence 

x1, x2, …. ,xn ∈ V are linearly independent if none of them 
can be written as a linear combination of the others.



Linear independence 

x1, x2, …. ,xn ∈ V are linearly independent if none of them 
can be written as a linear combination of the others.

Equivalently:

a1 x1 + a2 x2 + …. + an xn = 0   ⇒  a1 = a2 = …. = an = 0



Linear independence 

a1 x1 + a2 x2 + …. + an xn = 0   ⇒  a1 = a2 = …. = an = 0



Basis

v1, v2, …, vn ∈ V such that

● v1, v2, …, vn are linearly independent

● v1, v2, …, vn span V



Basis 

v1, v2, …, vn ∈ V such that

● v1, v2, …, vn are linearly independent

● v1, v2, …, vn span V

* n is the same for any choice of the basis vectors

* n is called the dimension of V

* There are also infinite dimensional vector spaces



Basis - Example



* Basis (general definition) 

{vi}i∈I ⊆ V such that

● vi's are linearly independent

● for any v ∈ V there is a finite set of vectors v1, v2, …, vd ∈ {vi}i∈I such 
that v ∈ span(v1, v2, …, vd)

* Any vector space has a basis 

* cardinality of {vi}i∈I is the same for any choice of the basis vectors

* cardinality of {vi}i∈I is called the dimension of V



Bases and Coordinate Representation

Why is independence needed? => uniqueness

every x ∈ V can be written uniquely as a linear combination of the basis 
vectors v1, v2, …, vn. 



Proof



Proof



Bases and Coordinate Representation



Example: The Euclidean space


