Probabilistic Graphical Models	Instructor:	دانتگاهستنی خواجی سرالدین طوسی
Final Exam	B. Nasihatkon	۲۰
Name:	ID:	Khordad 1396 - June 2017

1. Variable Elimination (20 points)

Assume that we are to apply variable elimination to the following Bayesian network.

A) Draw the corresponding Markov network (4 points)

- B) If you are to eliminate one variable from the network above, which variable(s) is (are) the best to start with? Which one is the worst? Why? (4 points)
- C) To compute P(D | F), propose an optimal elimination ordering in terms of the algorithm efficiency. Why is this the best (or a best) order? (7 points)
- D) Assume that we want to eliminate B, A, D, F and C in order. Draw the corresponding *induced graph*. (5 points)

2. Junction Tree (22 points)

Consider the following junction tree (clique tree)

 A) Write down the corresponding message beside each arrow. (2 points)

- B) Draw a Markov network (MRF) corresponding to the above clique tree (4 points)
- C) Write down the potential functions for the markov graph in part (B). Assume that there are **only binary and ternary** potentials and each cluster corresponds to **exactly one** potential function.For each potential function write down the corresponding cluster number (1,2,3,4 or 5). (3 points)

- D) What is the minimum number of message computations needed for the Belief Propagation algorithm to converge to the right solution? Write one such ordering of messages. (6 points).
- E) Assume that all variables are binary ($\in \{0, 1\}$), $\phi_1(E, H) = exp(1(E = H))$, where 1(.) is the indicator function, $\phi_2(H, A, B) = exp(3 A B H + 2A BH)$, $\phi_3(B, C) = exp(2 B C + B)$, and we are to perform **max-sum message passing** for **MAP** estimation. Derive $\delta_{1\rightarrow 2}(H)$, $\delta_{3\rightarrow 2}(B)$, **and then** $\delta_{2\rightarrow 5}(A, B)$. Notice that the functions $\delta_{i\rightarrow j}$ are **max-sum** messages. You can either write a formula or a tabular representation. (7 points)

3.Random walk / MCMC (22 points)

Consider a markov chain with the following transition model for a 1D distribution P(X) with a binary variable $X \in \{0, 1\}$, in which $\alpha = T(0 \rightarrow 1)$ and $\beta = T(1 \rightarrow 0)$.

- A) What are the values of $T(0 \rightarrow 0)$ and $T(1 \rightarrow 1)$ in terms of α and β . (1 point)
- B) Assume that the transition probabilities α and β are given. Derive the corresponding stationary distribution $P^{\infty}(0) = \pi(0)$ and $P^{\infty}(1) = \pi(1)$ in terms of α and β . Write down the full derivations. (8 points)

C) Assume $\alpha = 0.3, \beta = 0.8$. What is the corresponding stationary distribution $P^{\infty}(X)$? (2 points)

D) Now, we want to solve the inverse problem. Assume that a special stationary distribution $P^{\infty}(X)$ is desired, that is, $P^{\infty}(0) = p$ and $P^{\infty}(1) = 1 - p$ for a given p. We want to determine α and β in terms of p. Using the result from part (B), determine the ratio α / β in terms of p. Show that every solution $\alpha, \beta \in [0, 1]$ with this ratio is an answer to our problem, and therefore for a given stationary distribution the solution (α, β) is not unique. (Assume that 0) (8 points)

E) Assume that we need to design a markov chain for which $P^{\infty}(0) = p = 0.4$. Obtain two different solutions (α , β) such that for the first one $\beta = 0.1$ and for the second one $\beta = 0.2$ (3 points).

F) ** Which of the two solutions in part (E) do you think gives a better random walk algorithm in terms of mixing more quickly? Give an intuitive explanation. Can you give an optimal solution (α , β) for part (E)? **(3+3 extra points)**

4. Parameter learning Bayesian Networks (16 points)

Consider the following Bayesian network with all-binary variables ($\in \{0, 1\}$). Assume that the training data X^1, X^2, \dots, X^N is available, where $X^i = (a^i, b^i, c^i, d^i, e^i)$.

A) Write down the log-likelihood function in terms of the **logarithm of CPDs**. (6 points)

B) Assume that all the CPDs in this network are	8	
parameterized independently, except P(C A)		a
and P(E C) which have shared parameters, i.e.	X^{I}	0
share the same table, that is	X^2	0
P(C = x A = y) = P(E = x C = y).	X^3	1
Consider the following training data. Write the	X^4	1
tabular representation of the Maximum Likelihood	X^5	0
solution for each of the CPDs. (10 points)	Xº	0

	a ⁱ	b^i	c^i	ď	e
XI	0	1	0	0	0
X^2	0	0	0	1	1
X^3	1	0	0	1	0
X^4	1	1	0	0	1
X^5	0	1	0	1	0
X^{6}	0	0	1	0	1

5.Parameter learning MRFs (20 points)

Consider the following MRF, on **binary** variables **A**, **B**, **C** $\in \{0, 1\}$ with joint distribution

 $P(A, B, C) = \frac{1}{Z} exp(w_1 \ 1(A = B) + w_2 \ 1(B = C) + w_3 \ 1(C = A))$

where 1(X = Y) is equal to 1 if X = Y and zero otherwise.

A) Derive the partition function Z as a function of w_1, w_2, w_3 . (4 points)

B) Consider the training data $X^1, X^2, ..., X^N$, where $X^i = (a^i, b^i, c^i)$. Write down the log-likelihood function in terms of the data (a^i, b^i, c^i) and the weights w_1, w_2, w_3 . Simplify your answer as much as possible (4 points)

C) Derive the log-likelihood function for the following training data. Simplify your result as much as you can. (3 points)

	ai	b^i	ci
XI	0	1	0
X^2	0	0	0
X^3	1	0	0
X^4	1	1	0
X5	0	1	0
Xo	0	0	1

- D) Which of the following assignments to w_1, w_2, w_3 better describes the data? Why? (3 points)
 - a) $w_1, w_2, w_3 = (2, 2, 1)$
 - **b)** $w_1, w_2, w_3 = (2, 1, 2)$
- E) Take derivatives of the log-likelihood function of part (C) with respect to w_1 , w_2 and w_3 , and set them equal to zero. Let $a = e^{w_1}$, $b = e^{w_2}$, and $c = e^{w_3}$. Derive polynomial equations in terms of *a*, *b*, *c* for optimal w_1, w_2, w_3 . (4 points)

F) Using the result of part (E) prove that for optimal parameters we have $w_1 = w_3$. (2 points)