Probabilistic Graphical Models Final Exam - Spring 1402 (2023)	Instructor: B. Nasihatkon	
Name:	ID:	

Question 1 - Loopy Max-sum message passing (35 points)
Consider the following MRF with the distribution $P(A, B, C, D)=1 / Z \exp (\theta(A, B, C, D))$
 where $\theta(A, B, C, D)=A B+1(B=C)-C D+1(D=A)$ and all the variables are binary $A, B, C, D \in\{0,1\}$.
A) Calculate the max-marginal $M(A, B)=\max _{C} \max _{D} \theta(A, B, C, D)$. (10 points)
B) We intend to perform Loopy Max-Sum message passing using the following cluster graph. All the messages are equal to zero at the beginning. Let us just calculate the clock-wise messages. Compute $\delta_{1 \rightarrow 2}(B)$, then $\delta_{2 \rightarrow 3}(C)$, then $\delta_{3 \rightarrow 4}(D)$, then $\delta_{4 \rightarrow 1}(A)$. After that, compute $\delta_{1 \rightarrow 2}(B)$ again. (20 points)

C) What will be the value of the max-sum message $\delta_{1 \rightarrow 2}(B)$ after computing the messages n times? Do you think the algorithm will converge? (5 points)

Question 2 - Gibbs sampling (25 points)

Consider the MRF in Question 1:
$P(A, B, C, D)=1 / Z \exp (A B+1(B=C)-C D+1(D=A))$ with binary variables $A, B, C, D \in\{0,1\}$. We want to take a sample from it using the Gibbs sampling algorithm. To perform a single MCMC transition
$A^{t}, B^{t}, C^{t}, D^{t} \rightarrow A^{t+1}, B^{t+1}, C^{t+1}, D^{t+1}$ we sample $A^{t+1}, B^{t+1}, C^{t+1}$, and D^{t+1} (in order) from the distributions $Q_{A}(A), Q_{B}(B), Q_{C}(C)$, and $Q_{D}(D)$, respectively. Derive $Q_{A}(A), Q_{B}(B), Q_{C}(C)$, and $Q_{D}(D)$. Simplify as much as possible. (be careful about using A^{t} or A^{t+1} etc., in the distributions).

Question 3 - Variable Elimination / MRF parameter estimation (40 points)

Consider the MRF $P(A, B, C, D)=1 / Z \exp (\alpha A B+1(B=C)-C D+1(D=A))$ where all the variables are binary $A, B, C, D \in\{0,1\}$ and α is the only parameter.
A) Find the partition function Z as a function of α using variable elimination. The partition function will be in the form of $Z=p e^{\alpha}+q$. What are p and q ? (10 points) Hint: Write $\exp (\alpha A B+1(B=C)-C D+1(D=A))=$ $\exp (\alpha A B) \exp (1(B=C)) \exp (-C D) \exp (1(D=A))$, then apply variable elimination.
B) Write down the log-likelihood function considering the data below. To be concise, write in terms of p and q defined in part A. (14 points)

A^{i}	B^{i}	C^{i}	D^{i}
0	0	0	0
1	0	1	0
1	1	0	1
0	0	1	0

C) Find the maximum-likelihood solution for α by taking the setting derivative of log-likelihood equal to zero. Your solution can be in terms of p and q. (16 points)

